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Abstract. We consider the resonance set of a real polynomial, i. e. the set
of all the points of the coefficient space at which the polynomial has com-
mensurable zeroes. The constructive algorithm of computation of polynomial
representation of the resonance set is provided. The structure of the resonance
set of a polynomial of degree n is described in terms of partitions of number
n. The main algorithms, described in the preprint, are organized as a library
of the computer algebra system Maple.

Introduction
Let fn(x) be a monic polynomial of degree n with real coefficients

fn(x)
def
= xn + a1x

n−1 + a2x
n−2 + · · ·+ an. (1)

The n-dimensional space Π ≡ Rn of its coefficients a1, a2, . . . an is called the coef-
ficient space of polynomial (1).

Definition 1. A pair of roots ti, tj , i, j = 1, . . . , n, i 6= j, of the polynomial (1) is
called p : q-commensurable if ti : tj = p : q.

Here and further we consider that p ∈ Z\{0}, q ∈ N, i.e. we exclude the case
when one of the commensurable root ti or tj is equal to zero due to the fact that
zero root is commensurable with any other root.

Definition 2. Resonance set Rp:q(fn) of the polynomial fn(x) is called the set of
all points of the coefficient space Π at which fn(x) has at least a pair of p : q-
commensurable roots, i.e.

Rp:q(fn) = {P ∈ Π : ∃i, j = 1, . . . , n, ti : tj = p : q}. (2)

The aim of this work is to present an algorithm of constructing polynomial
representation of the resonance set Rp:q(fn) of the real polynomial fn(x).
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1. Condition on p : q-commensurability of polynomial roots
Let polynomial (1) has a pair of p : q-commensurable roots. It means that two
polynomials fn(px) and fn(qx) has common root, or in terms of resultant one has
that Resx(fn(px), fn(qx)) = 0. In the case when p = q both polynomials fn(px)
and fn(qx) have exactly n common roots. In case an = 0 one of the root is equal
to zero, therefore resultant can be written in the form

Resx(fn(px), fn(qx)) = an(p− q)n GDp:q(fn), (3)

where GDp:q(fn) is so called generalized discriminant of the polynomial (1) intro-
duced in [1].

Polynomial (1) may have some pairs of p : q-commensurable roots.

Definition 3. The chain Ch(k)
p:q(ti) of p : q-commensurable roots of length k (shortly

chain of roots) is called the finite part of geometric progression with common ratio
p/q and scale factor ti, each member of which is a root of polynomial (1). The value
ti is called the generating root.

The detail structure of the resonance set (2) can be described with the help of
so called i-th generalized subdiscriminants GD(i)

p:q(fn), which are nontrivial factors
of i-th subresultants of pair of polynomials fn(px) and fn(qx). Such subresultants
can be computed as i-th inners of Sylvester matrix constructed from the coefficients
of mentioned above polynomials. For more details see [2].

Theorem 1. Polynomial fn(x) has exactly n−d different chains of roots Ch(i)
p:q(tj),

j = 1, . . . , n − d if and only if in the sequence
{

GD(i)
p:q(fn), i = 0, . . . , n− 1

}
of

i-th generalized subdiscriminants of fn(x) the first nonzero subdiscriminant is d-th
generalized subdiscriminant GD(d)

p:q(fn).

2. Parametrization of the resonance set
Consider a partition λ = [1n12n2 . . . ini . . . ] of n ∈ N. Functions p(n) and pl(n)
return the number of all partitions and the number of all partitions of the length l
of natural number n respectively. The value i in the partition λ defines the length
of chain Ch(i)

p:q(ti) for a corresponding generating root ti, the value ni defines the
number of different generating roots, which give the chains of root of the length
i. Then l =

∑
i ni is the number of different generating roots of the polynomial

fn(x) for the certain coefficient of commensurability p : q, and
∑

i ini = n.
Any partition λ of degree n of polynomial (1) defines a certain structure of

p : q-commensurable roots of this polynomial and it corresponds to some algebraic
variety Vi

l , i = 1, . . . , pl(n) of dimension l in the coefficient space Π. The number
of such varieties of dimension l is equal to pl(n) and total number of all varieties
consisting the resonance set Rp:q(fn) is equal to p(n) − 1. It is so because the
partition [1n] corresponds to the case when all the n roots of polynomial (1) are
not commensurable.
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Algorithm for parametric representation of any variety Vl from the resonance
set Rp:q(fn) is based on the following

Theorem 2. Let Vl, dimVl = l, be a variety on which polynomial (1) has l dif-
ferent chains of p : q-commensurable roots and the chain generated by the root
t1 has length m > 1. Let denote by rl(t1, t2, . . . , tl) parametrization of variety Vl.
Therefore the following formula

rl(t1, . . . , tl, v) = rl(t1, . . . , tl)+
p(qmv − pm−1t1)

t1(pm − qm)
[rl(t1, . . . , tl)− rl((q/p)t1, . . . , tl)]

(4)
gives parametrization of the part of variety Vl+1, on which there exists Ch(m−1)

p:q (t1),
simple root v and other chains of roots are the same as on the initial variety Vl.

From the geometrical point of view Theorem 2 means that part of variety Vl+1

is formed as ruled hypersurface by the secant lines, which cross its directrix Vl at
two points defined by such values of parameters t11 and t21 such that t11 : t21 = q : p.
If polynomial fn(x) has on the variety Vl+1 pairs of complex-conjugate roots it is
necessary to make continuation of obtained parametrization (4).

Let start from partition
[
n1
]
which corresponds to variety V1 with the only

chain Ch(n)
p:q (t1) of roots on it. One can apply transformation (4) of the Theorem 2

in succession and finally can obtain parametrization of variety Vn−1 of the maximal
dimension dimVn−1 = n− 1. There exists only one chain of roots of the length 2
on it and other roots are simple.

Let define the following three operations, which make it possible to obtain
parametrization of each variety Vl of dimensions from 2 to n− 1.

ASCENT: allows to pass from variety Vi to the part of another variety Vi+1

with dimension one greater.
CONTINUATION: allows to get the parametrization of the entier variety Vi+1

obtained on the previous step.
DESCENT: allows to pass from variety Vj , on which there exist two chains of

roots with equal length, say k, to variety Vj−1, on which there exists a chain
of roots with length 2k.
One can combine successively mentioned above operations to obtain para-

metric representation of each variety Vi from the resonance set (2).

Statement 1. Resonance set Rp:q(fn) of real polynomial fn(x) for a certain value
of commensurability coefficient p : q allows polynomial parametrization of each its
variety Vl ⊂ Rp:q(fn).

3. Resonance set of cubic polynomial
Consider real cubic polynomial

f3 = x3 + a1x
2 + a2x+ a3. (5)
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It has two generalized subdiscriminants

GD(1)
p:q(f3) = pqa21a2 + (p2 + pq + q2)a1a3 − (p+ q)2a22,

GD(0)
p:q(f3) = (pq(p+ q))

2
a31a3 − q3p3a21a22 − pq

(
p2 + pq + q2

)
×

×
(
p2 + 4 pq + q2

)
a1a2a3 + (pq(p+ q))

2
a32 +

(
p2 + pq + q2

)3
a23.

Resonance set Rp:q(f3) shown in Figure 1 consists of two varieties

V1 :
{
a1 = −(p2 + pq + q2)t1, a2 = pq(p2 + pq + q2)t21, t3 = −(pqt1)3

}
,

V2 :
{
a1 = −(p+ q)t1 − t2, a2 = pqt21 + (p+ q)t1t2, a3 = −pqt21t2

}
,

which corresponds to partitions
[
31
]
and

[
1121

]
respectively.

Figure 1. Resonance set R7:1(f3).
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