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• Research object • Let ∂x be the derivation operator w.r.t. x and R :=
Q(a1, . . . , ai){u} be the ordinary di�erential polynomial ring over the parametric
�eld Q(a1, . . . , ai) of constants. Here we consider quasilinear evolution equations
of the form

ut = aum + F (um−1, . . . , u1, u) , 0 6= a ∈ Q , m ∈ N>0 , (1)

where uk := ∂kxu (0 ≤ k ≤ m), u0 := u and F ∈ R is a di�erential polynomial of
the order m−1 in ∂x (denotation: ord(F ) = m−1) such that there is a di�erential
polynomial P ∈ R satisfying

F = ∂xP =

m−2∑
k=0

uk+1
∂P

∂uk
. (2)

Given F , one can algorithmically verify whether or not such P exists and construct
it in the case of existence. The equality (2) means that (1) admits the conservation
law form

ut = ∂x (aum−1 + P ) , P ∈ R , ord(P ) = m− 2 . (3)

The set of evolution equations admitting the polynomial conservation law (3)
contains most of classical evolution equations, e.g., the Korteveg-de Vries (KdV)
equation and KdV hierarchy, the Burgers equation and Burgers hierarchy, the
Kuramoto-Sivashinsky equation, the Burgers-Huxley equation, etc., and their var-
ious generalizations (cf. [1]). All these equations have exact solutions that are
useful in analysis of numerical methods for their solving.
• Discretization method • To discretize equation (3), we follow the approach of
paper [2] and convert the equation into the equivalent integral form∮

Γ

(P + aum−1) dt+ u dx = 0 , (4)
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Figure 1. Basic integration contour

where Γ is an arbitrary singly connected integration contour. Using the standard
notation unj = u(tn, xj) for the grid function and the Cartesian grid with tn+1 −
tn = τ , xj+1 − xj = h we choose the rectangular integration contour as a �control
volume� (cf. [2]) and add m− 2 integral relations∫ xj+1

xj

uk dx = uk+1(t, xj+1)− uk+1(t, xj) , k = 1, . . . ,m− 2 . (5)

Now, to discretize (4) we apply a numerical evaluation method to the contour inte-
gral (4) in order to express it in terms of the grid functions and also (possibly dif-
ferent) numerical evaluation methods to the integrals in the left-hand sides of (5).
Thereby, we obtain a system of di�erence equations containing unj , u1

n
j , . . . , um−1

n
j .

The last step in generation of a �nite di�erence approximation (FDA) to (1) is al-
gebraic elimination of the grid functions u1

n
j , . . . , um−1

n
j , which correspond to the

proper partial derivatives of u, from the discrete system obtained. Such elimina-
tion can be done by means of theMaple package LDA [3] which is freely available
(http://wwwb.math.rwth-aachen.de/Janet/).
• Example: FDA to the KdV equation• We illustrate the above described ap-
proach by example of the KdV equation

ut + uxxx + 6uux = 0 . (6)

Its integral conservation law form for the contour C of Figure 1 reads∮
C
(uxx + 3u2) dt+ u dx = 0 . (7)

To approximate numerically the contour integral, we apply the trapezoidal
rule to the integration over t as well as to the integration over x. For numerical
approximations of the integral relations we apply the trapezoidal rule for the in-
tegration of ux and the midpoint rule for the integration of uxx. This leads to the
di�erence approximation to (6) which is outputted by the following Maple code
shown in Figure 3 with P := 3u2. The output is the left-hand side of the FDA
to (6) written in the conventional form as

un+1
j − unj

τ
+

(Pn+1
j+1 − P

n+1
j−1 ) + (Pn

j+1 − Pn
j−1)

4h
+

+
(un+1

j+2 − 2un+1
j+1 + 2un+1

j−1 − u
n+1
j−2 ) + (unj+2 − 2unj+1 + 2unj−1 − unj−2)

4h3
= 0 .
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Figure 2. Construction of FDA to KdV with Maple

• Numerical solution • Since the obtained FDA to (6) has cubic nonlinearyty
(due to P = 3u2) in the grid function on the next time layer, in order to construct
a numerical solution we use the following linearization

v2
k+1 = v2

k+1 − v2
k + v2

k = (vk+1 − vk)(vk+1 + vk) + v2
k ≈ vk+1 · 2vk − v2

k .

By taking this linearization into account, we implemented a numerical proce-
dure for construction of a solution to KdV in Python 2.7 freely downloadable from
the Web page https://www.python.org/download/releases/2.7/. Figure 4
demonstrates the time evolution of numerical solution in the domain x ∈ [0, 200]
with h = 0.4 and τ = 0.2 and for the initial value (Cauchy) problem with the
initial data

u(t = 0) := f(x, 0, 0.4) + f(x− 20, 0, 0.2)

where

f(x, t, κ) :=
2κ2

cosh2 [κ(x− 4κ2t)]

is the exact one-soliton solution to (6). As Figure 4 shows, the constructed nu-
merical solution reveals a behavior inherent to localized solutions of KdV.
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Figure 3. Dynamics of solution to KdV
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