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Discrete model of quantum evolution. The trajectory of a quantum system is a
sequence of unitary evolutions interspersed with observations. We consider a model
of quantum dynamics represented by the following scheme

Πψt0
Πψti−1

γ1i, w1i
...

γki, wki
...

γKii, wKii

Πψti
ΠψtN

(1)

Here t0, . . . , tN ∈ Z are times of observations Πψt0
, . . . ,ΠψtN

represented by pro-
jectors, namely, Πψti

= |ψti〉〈ψti | is the projector that fixes ψti ∈ H (a Hilbert
space) as the result of observation at the time ti. The entities γki are all possible
products of ∆ti = ti − ti−1 elements of a finite gauge group G = {g1, . . . , gM} with
unitary representation U in H. wki ≥ 0 is the weight of γki,

∑Ki

k=1 wki = 1. The
parallel transports (gauge connections) γki describe different ways of identification
of the indistinguishable objects in the transition between the instants ti−1 and ti.
Single unitary evolution as the most likely gauge connection. Standard quantum
mechanics implies a single unitary evolution between measurements, i.e., for some
a ∈ G the product a∆ti has weight 1, and all other products have zero weights. The
unitary evolution can be written as U = U

(
a∆ti

)
, or, introducing the Hamiltonian

H = i ln U(a), as U = e−iH∆ti . However, the fact that the gauge fields in physics
are determined by the least action principle leads to the idea to study the case
of general weights suggesting that a unique unitary evolution should occur as a
dominant element in the set of all possible evolutions.
Selection of most likely trajectories and the principle of least action. The main
problem in the study of the evolution is the search of the most probable trajectories.
The one-step transition probability is given by the formula

Pψti−1
→ψti

=

Ki∑
k=1

wki 〈ϕki|Πψti
|ϕki〉 , where ϕki = U(γki)ψti−1

.



2 Vladimir V. Kornyak

The probability of the whole trajectory can be calculated as the product

Pψt0
→···→ψtN

=

N∏
i=1

Pψti−1
→ψti

. (2)

It is convenient to introduce the one-step entropy Sψti−1
→ψti

= logPψti−1
→ψti

and
replace the product of probabilities (2) by the entropy of trajectory

Sψt0
→···→ψtN

=

N∑
i=1

Sψti−1
→ψti

.

This is a discrete counterpart of the continuous action S =

∫
Ldt.

Evolution of gauge connections. Let {wtm} , 1 ≤ m ≤ M be a probabilistic distri-
bution (i.e., wtm ≥ 0 and wt1 + . . .+ wtM = 1) on the gauge group G at the time t.
Consider a group algebra element of the form A = w1

1g1 + . . . + w1
MgM. The time

evolution of the statistics of parallel transports is described by the formula

wt1g1 + . . .+ wtMgM = At.

The uniform distribution, obviously, defines an idempotent in the group algebra:
B = 1

M (g1 + . . .+ gM) =⇒ Bt = B. At tends at large time (t� ExpG) to the
uniform distribution on the group generated by the elements with nonzero initial
probabilities. For small time the evolution of statistics resembles the statistics
evolution of a random walk. The behavior of the model — as is typical for quantum
mechanics — depends on the choice of time intervals between measurements ∆ti.
Natural and standard representations of symmetric group. The most important
and universal example of a finite group is the symmetric group SN. We use here
the N-dimensional natural and (N− 1)-dimensional irreducible standard represen-
tations of SN to study the above model. For our purposes it is sufficient to consider
the constructive version of natural representation that is obtained by replacing the
complex space CN by the module NN, where N = {0, 1, . . .}. Then, the constructive
version of standard representation is obtained by the projection. As a test case, we
consider the quantum Zeno effect for these representations within the framework
of our approach.
Energy of permutation. Planck’s formula E = hν associates the energy with the
periods of underlying microscopic processes. By analogy, we define the “energy”

of a permutation p as its frequency: εp =
1

ord p
. Of course, this definition is

only approximate because the unitary operator associated with the permutation
contains many frequencies: they are inverses of the lengths `1, . . . , `K of disjoint
cycles that constitute the permutation and the period of the permutation is equal
to ord p = lcm (`1, . . . , `K) . However, the definition is useful for classifying the
elements of permutation groups from a “physical point of view”. Moreover, the
permutations of the dominant conjugacy classes usually contain a small number
of different frequencies and the definition becomes “almost exact”.
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Example. Computations with S50. Figure 1 shows the “energy spectrum” for the
dominant classes of the group S50 in the range of periods [1..300]. The numerical
characteristics of the group are: |S50| = 50! ≈ 3.04×1064; the number of conjugacy
classes is equal to 204226; the maximum period is equal to 180180. The size of the
largest class is approximately equal to 6.2 × 1062, and its period is 49. Data for
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Figure 1. Energy spectrum of S50. Exact computation.

the graph were obtained by exact calculations.
Monte Carlo approach. The study of the model discussed here by analytical meth-
ods seems to be problematic. A reasonable approach is to use Monte Carlo meth-
ods, which in their spirit are perfectly adequate to the “irreducible quantum ran-
domness” (John von Neumann1). Figure 2 reproduces data obtained from the
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Figure 2. Energy spectrum of S50. Randomly generated 106 permutations.

1Both the idea of the irreducibility of quantum randomness and Monte Carlo methods were
actively promoted by John von Neumann.
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Monte Carlo simulation. In this task — which took about 10 sec on 3.3 GHz Intel
Core i3-2120 CPU — we have generated 106 elements of the group S50. Comparing
the figures, we see that the Monte Carlo simulation reproduces the general features
of the distribution rather satisfactory taking into account that the ratio of the size
of the generated sample to the size of the group is only about 10−58.
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