Extension of the Newton–Puiseux algorithm to the case of a nonzero characteristic ground field

Alexander L. Chistov

Abstract. We suggest a generalization of the Newton–Puiseux algorithm for constructing roots of polynomials in the field of fractional power series to the case of nonzero characteristic of the ground field.

Let k be a ground field and k((X)) be the field of power series in X with coefficients in k. Let $f \in k((X))[Y]$ be a separable polynomial of the degree $\deg_Y f = d \ge 1$. We shall assume without loss of generality that $f \in k[[X]][Y]$ and the leading coefficient $lc_Y f = 1$ (i.e., the coefficient from k[[X]] of Y^d in the polynomial f). Denote by $\Delta = \operatorname{Res}(f, f'_Y)$ the discriminant of the polynomial f.

If the characteristic char(k) = 0 the algebraic closure

$$\Omega = \overline{k((X))} = \bigcup_{\nu \ge 1} \overline{k}((X^{1/\nu})).$$
(1)

The classical Newton–Puiseux algorithm constructs the roots of the polynomial f in the field Ω using the method of Newton broken lines. Namely let $y_j = \sum_{i \ge 0} y_{j,i} X^{\alpha_{j,i}}$ be a root of f where all $y_{j,i} \in \overline{k}$, $\alpha_{j,0} < \alpha_{j,1} < \alpha_{j,2} < \ldots$, all $\alpha_{j,i} \in \frac{1}{e_j} \mathbb{Z}$ for some $1 \le e_j \le d$ (to fix e_j we assume that it is minimal possible). Then for every $r \ge 0$ the pair $(y_{j,r}, \alpha_{j,r})$ can be found considering the Newton broken line of the polynomial

$$f\left(Y - \sum_{0 \leqslant i < r} y_{j,i} X^{\alpha_{j,i}}\right)$$

This is an essence of the Newton–Puiseux algorithm.

Now the field $K_j = k((X))[y_j] = k_j((\pi_j))$ where k_j the field of residues of the field K_j and $\pi_j = X^{1/e_j}$ is a uniformizing element of the field K_j . The field k_j is a finite extension of the field k and generated over k by all the elements $y_{j,i}$ (actually by a finite number of them). The degree $[k_j : k] = f_j \leq d$. The degree of the minimal polynomial of the element y_j over k((X)) is equal to $f_j e_j$.

Alexander L. Chistov

In what follows we suppose that $\operatorname{char}(k) = p > 0$. Then there are difficulties in comparison with the case $\operatorname{char}(k) = 0$. First of all one can not describe the field $\Omega = \overline{k(X)}$ in a simple way. Namely, (1) does not hold. More than that, let $y_j \in \Omega$ be a root of the polynomial f. Then in general one can not choose an element $\pi \in \Omega$ such that the root $y_j \in \overline{k}((\pi))$ (for this fixed j).

Still the field $K_j = k((X))[y_j]$ has a discrete valuation

ord :
$$K_j \to \frac{1}{e_j} \mathbb{Z} \cup \{+\infty\}$$

such that $\operatorname{ord}(X) = 1$ and $\operatorname{ord}(\pi_j) = 1/e_j$ for a uniformizing element π_j of the field K_j . The residue field k_j of the field K_j with respect to this valuation is a finite (not necessarily separable!) extension of the field k of degree f_j . Similarly to the case of zero-characteristic the degree of the minimal polynomial of the element y_j over k((X)) is equal to $f_j e_j$. There is a system of representatives Σ_j of the field k_j in K_j . We shall assume without loss of generality that $\Sigma_j \supset k$ and Σ_j is a linear space over k (in general one can not choose Σ_j to be an algebra over k). Denote by k_s the separable closure of the field k. Then the field $k_s \cap k_j \subset K_j$. So one can assume that $k_s \cap k_j \subset \Sigma_j$. Now the root y_j can be represented as a sum of the infinite series

$$y_j = \sum_{i_0 \leqslant i \in \mathbb{Z}} y_{j,i} \pi_j^i, \tag{2}$$

where all $y_{j,i} \in \Sigma_j$, $y_{j,i_0} \neq 0$. The field k_j is generated over k by all the residues of the elements $y_{j,i}$, $i \ge i_0$.

So the final aim of a generalization of the Newton–Puiseux algorithm for nonzero characteristic is to construct for every root y_j of the polynomial f a uniformizing element π_j , a system of representatives Σ_j and the expansion (2). More precisely, to obtain (2) it is sufficient to construct all the elements $y_{j,i} \in \Sigma_j$ for $i_0 \leq i \leq 1 + \operatorname{ord}(\Delta)$ (we assume that $\operatorname{ord}(\Delta)$ is known). After that subsequent elements $y_{j,i}$ can be found in a simple way using a variant of the Hensel lemma.

Unfortunately one can not obtain at once Σ_j and π_j . So we construct a finite number of elements $z_1, z_2, \ldots, \eta_1, \eta_2, \ldots$ (they depend on y_j ; in what follows jis arbitrary but fixed) satisfying the following properties. For every m the orders $\operatorname{ord}(z_m) = a_m/(b_m p^{s_m})$, where $\operatorname{GCD}(a_m, p) = 1$, $\operatorname{GCD}(b_m, p) = 1$ and $s_m > s_{m-1}$ (we put $s_0 = 0$). Further, for every m denote by $\overline{\eta}_m$ the residue of the element η_m . The the field $k_s[\overline{\eta}_1, \ldots, \overline{\eta}_m]$ is purely inseparable over the field k_s and has the degree p^{r_m} over k_s where $1 \leq r_m \in \mathbb{Z}$ and $r_m > r_{m-1}$ (we put $r_0 = 0$).

Set w(0) = v(0) = w(1) = v(1) = 0, $\tilde{y}_1 = y_j$. At the beginning of the *q*-th step of the algorithm the elements z_1, z_2, \ldots, z_v , $\eta_1, \eta_2, \ldots, \eta_w$ and \tilde{y}_q are known. Here the integer $q \ge 1$ and we shall write w = w(q), v = v(q). We have

$$v(q-1) \leqslant v(q) \leqslant v(q-1) + 1, \quad w(q-1) \leqslant w(q) \leqslant w(q-1) + 1,$$

$$(v(q-1), w(q-1)) \neq (v(q), w(q)) \quad \text{for} \quad q \ge 2.$$

Put $u = u(q) = s_{v(q)} - s_{v(q-1)} + r_{w(q)} - r_{w(q-1)}$.

Then using Newton broken lines we construct the expansion

$$\widetilde{y}_{q}^{p^{u}} = \sum_{(\alpha, i_{1}, \dots, i_{v}, j_{1}, \dots, j_{w}) \in A} y_{\alpha, i_{1}, \dots, i_{v}, j_{1}, \dots, j_{w}} X^{\alpha} z_{1}^{i_{1}} \cdot \dots \cdot z_{v}^{i_{v}} \eta_{1}^{j_{1}} \cdot \dots \cdot \eta_{w}^{j_{w}} + \widetilde{y}_{q+1},$$
(3)

where

- (i) A is a finite (or empty) subset of $\mathbb{Q} \times \mathbb{Z}^{v+w}$ (depending on q),
- (ii) $0 \leq j_m < p^{r_m r_{m-1}}$ for all $1 \leq m \leq w$,
- (iii) there is an integer a_m such that $a_m \leq i_m < a_m + p^{s_m s_{m-1}}$ for all $1 \leq m \leq v$ (these integers a_m depend on q and y_j ; in this extended abstract we don't explain the sense of introducing a_m),
- (iv) $\alpha = \beta/\gamma \in \mathbb{Q}, \ \beta, \gamma \in \mathbb{Z}$, and $\operatorname{GCD}(\gamma, p) = 1$,
- (v) for every $(\alpha, i_1, \ldots, i_v, j_1, \ldots, j_w) \in A$ the element $0 \neq y_{\alpha, i_1, \ldots, i_v, j_1, \ldots, j_w} \in k_s$.
- (vi) for any pairwise distinct $(\alpha, i_1, \ldots, i_v, j_1, \ldots, j_w), (\alpha', i'_1, \ldots, i'_v, j'_1, \ldots, j'_w) \in A$ either $(j_1, \ldots, j_w) \neq (j'_1, \ldots, j'_w)$ or $\alpha + \sum_{1 \leq m \leq v} i_m a_m / (b_m p^{s_m}) \neq \alpha' + \sum_{1 \leq m \leq v} i'_m a_m / (b_m p^{s_m}).$
- (vii) For every $(\alpha, i_1, \ldots, i_v, j_1, \ldots, j_w) \in A$

$$\alpha + \sum_{1 \leq m \leq v} i_m a_m / (b_m p^{s_m}) < \min\{\operatorname{ord}(\widetilde{y}_{q+1}), \operatorname{ord}(\Delta) + 1\},$$

(viii) the number of elements #A is maximal possible, i.e., there is not a similar expansion with A' in place of A satisfying (i)–(vii) and such that #A' > #A.

If $\operatorname{ord}(\widetilde{y}_{q+1}) < \operatorname{ord}(\Delta) + 1$ then using the element \widetilde{y}_{q+1} one can construct z_{v+1} or η_{w+1} (may be both of them), define v(q+1), w(q+1) and proceed to the next (q+1)-th step.

If $\operatorname{ord}(\widetilde{y}_{q+1}) \ge \operatorname{ord}(\Delta) + 1$ then the considered q-th step is final and after that one can construct Σ_j , π_j and expansion (2)

Actually this algorithm is *canonical*. More than that, it is natural to consider the family of expansions (3) for all q as a generalization for nonzero characteristic of one expansion (1) for zero characteristic. Of course we omit details here.

Assume that $f \in k[X, Y]$ and the field k is finitely generated over a primitive subfield. Then the interesting problem is to estimate the complexity of this algorithm and obtain the results in nonzero characteristic similar to [1], [2].

References

- Chistov A. L.: "Polynomial complexity of the Newton-Puiseux algorithm", in: Lecture Notes in Computer Science, Vol. 233, Springer, 1986, p. 247–255.
- [2] Chistov A. L.: "Effective construction of an algebraic variety nonsingular in codimension one over a ground field of zero characteristic", Journal of Mathematical Sciences v.179 (2011), Issue 6, p. 729-740.

Alexander L. Chistov

Alexander L. Chistov St. Petersburg Department of Steklov Mathematical Institute of the Academy of Sciences of Russia Fontanka 27, St. Petersburg 191023, Russia, e-mail: alch@pdmi.ras.ru