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Abstract. We suggest a generalization of the Newton–Puiseux algorithm for con-

structing roots of polynomials in the field of fractional power series to the case of

nonzero characteristic of the ground field.

Let k be a ground field and k((X)) be the field of power series in X with
coefficients in k. Let f ∈ k((X))[Y ] be a separable polynomial of the degree
degY f = d > 1. We shall assume without loss of generality that f ∈ k[[X]][Y ]
and the leading coefficient lcY f = 1 (i.e., the coefficient from k[[X]] of Y d in the
polynomial f). Denote by ∆ = Res ( f, f ′Y ) the discriminant of the polynomial f .

If the characteristic char(k) = 0 the algebraic closure

Ω = k((X)) =
⋃
ν>1

k((X1/ν)). (1)

The classical Newton–Puiseux algorithm constructs the roots of the polynomial
f in the field Ω using the method of Newton broken lines. Namely let yj =∑
i>0 yj,iX

αj,i be a root of f where all yj,i ∈ k, αj,0 < αj,1 < αj,2 < . . . , all

αj,i ∈ 1
ej

Z for some 1 6 ej 6 d (to fix ej we assume that it is minimal possible).

Then for every r > 0 the pair (yj,r, αj,r) can be found considering the Newton
broken line of the polynomial

f

Y − ∑
06i<r

yj,iX
αj,i

 .

This is an essence of the Newton–Puiseux algorithm.

Now the field Kj = k((X))[yj ] = kj((πj)) where kj the field of residues of

the field Kj and πj = X1/ej is a uniformizing element of the field Kj . The field
kj is a finite extension of the field k and generated over k by all the elements yj,i
(actually by a finite number of them). The degree [kj : k] = fj 6 d. The degree of
the minimal polynomial of the element yj over k((X)) is equal to fjej .
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In what follows we suppose that char(k) = p > 0. Then there are difficulties
in comparison with the case char(k) = 0. First of all one can not describe the

field Ω = k((X)) in a simple way. Namely, (1) does not hold. More than that,
let yj ∈ Ω be a root of the polynomial f . Then in general one can not choose an

element π ∈ Ω such that the root yj ∈ k((π)) (for this fixed j).

Still the field Kj = k((X))[yj ] has a discrete valuation

ord : Kj →
1

ej
Z ∪ {+∞}

such that ord(X) = 1 and ord(πj) = 1/ej for a uniformizing element πj of the field
Kj . The residue field kj of the field Kj with respect to this valuation is a finite
(not necessarily separable!) extension of the field k of degree fj . Similarly to the
case of zero–characteristic the degree of the minimal polynomial of the element yj
over k((X)) is equal to fjej . There is a system of representatives Σj of the field kj
in Kj . We shall assume without loss of generality that Σj ⊃ k and Σj is a linear
space over k (in general one can not choose Σj to be an algebra over k). Denote
by ks the separable closure of the field k. Then the field ks ∩ kj ⊂ Kj . So one can
assume that ks ∩ kj ⊂ Σj . Now the root yj can be represented as a sum of the
infinite series

yj =
∑

i06i∈Z
yj,iπ

i
j , (2)

where all yj,i ∈ Σj , yj,i0 6= 0. The field kj is generated over k by all the residues
of the elements yj,i, i > i0.

So the final aim of a generalization of the Newton–Puiseux algorithm for
nonzero characteristic is to construct for every root yj of the polynomial f a
uniformizing element πj , a system of representatives Σj and the expansion (2).
More precisely, to obtain (2) it is sufficient to construct all the elements yj,i ∈ Σj
for i0 6 i 6 1 + ord(∆) (we assume that ord(∆) is known). After that subsequent
elements yj,i can be found in a simple way using a variant of the Hensel lemma.

Unfortunately one can not obtain at once Σj and πj . So we construct a finite
number of elements z1, z2, . . . , η1, η2, . . . (they depend on yj ; in what follows j
is arbitrary but fixed) satisfying the following properties. For every m the orders
ord(zm) = am/(bmp

sm), where G C D (am, p) = 1, G C D (bm, p) = 1 and sm >
sm−1 (we put s0 = 0). Further, for every m denote by ηm the residue of the
element ηm. The the field ks[η1, . . . , ηm] is purely inseparable over the field ks and
has the degree prm over ks where 1 6 rm ∈ Z and rm > rm−1 (we put r0 = 0).

Set w(0) = v(0) = w(1) = v(1) = 0, ỹ1 = yj . At the beginning of the q-th
step of the algorithm the elements z1, z2, . . . , zv , η1, η2, . . . , ηw and ỹq are known.
Here the integer q > 1 and we shall write w = w(q), v = v(q). We have

v(q − 1) 6 v(q) 6 v(q − 1) + 1, w(q − 1) 6 w(q) 6 w(q − 1) + 1,

(v(q − 1), w(q − 1)) 6= (v(q), w(q)) for q > 2.

Put u = u(q) = sv(q) − sv(q−1) + rw(q) − rw(q−1).
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Then using Newton broken lines we construct the expansion

ỹp
u

q =
∑

(α,i1,...,iv,j1,...,jw)∈A

yα,i1,...,iv,j1,...,jwX
αzi11 · . . . · zivv η

j1
1 · . . . · ηjww + ỹq+1, (3)

where

(i) A is a finite (or empty) subset of Q× Zv+w (depending on q),
(ii) 0 6 jm < prm−rm−1 for all 1 6 m 6 w,
(iii) there is an integer am such that am 6 im < am+psm−sm−1 for all 1 6 m 6 v

(these integers am depend on q and yj ; in this extended abstract we don’t
explain the sense of introducing am),

(iv) α = β/γ ∈ Q, β, γ ∈ Z, and G C D (γ, p) = 1,
(v) for every (α, i1, . . . , iv, j1, . . . , jw) ∈ A the element 0 6= yα,i1,...,iv,j1,...,jw ∈ ks.

(vi) for any pairwise distinct (α, i1, . . . , iv, j1, . . . , jw), (α′, i′1, . . . , i
′
v, j
′
1, . . . , j

′
w) ∈

A either (j1, . . . , jw) 6= (j′1, . . . , j
′
w) or α +

∑
16m6v imam/(bmp

sm) 6= α′ +∑
16m6v i

′
mam/(bmp

sm).

(vii) For every (α, i1, . . . , iv, j1, . . . , jw) ∈ A

α+
∑

16m6v

imam/(bmp
sm) < min{ord(ỹq+1), ord(∆) + 1},

(viii) the number of elements #A is maximal possible, i.e., there is not a similar
expansion with A′ in place of A satisfying (i)–(vii) and such that #A′ > #A.

If ord(ỹq+1) < ord(∆) + 1 then using the element ỹq+1 one can construct
zv+1 or ηw+1 (may be both of them), define v(q+ 1), w(q+ 1) and proceed to the
next (q + 1)-th step.

If ord(ỹq+1) > ord(∆)+1 then the considered q-th step is final and after that
one can construct Σj , πj and expansion (2)

Actually this algorithm is canonical. More than that, it is natural to consider
the family of expansions (3) for all q as a generalization for nonzero characteristic
of one expansion (1) for zero characteristic. Of course we omit details here.

Assume that f ∈ k[X,Y ] and the field k is finitely generated over a primi-
tive subfield. Then the interesting problem is to estimate the complexity of this
algorithm and obtain the results in nonzero characteristic similar to [1], [2].
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