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the case of a nonzero characteristic ground field
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Abstract. We suggest a generalization of the Newton—Puiseux algorithm for con-
structing roots of polynomials in the field of fractional power series to the case of
nonzero characteristic of the ground field.

Let k be a ground field and k((X)) be the field of power series in X with
coefficients in k. Let f € k((X))[Y] be a separable polynomial of the degree
degy f = d > 1. We shall assume without loss of generality that f € k[[X]][Y]
and the leading coefficient lcy f = 1 (i.e., the coefficient from k[[X]] of Y¢ in the
polynomial f). Denote by A = Res ( f, f, ) the discriminant of the polynomial f.

If the characteristic char(k) = 0 the algebraic closure

Q= k(X)) = [ k(X")). (1)

v>1

The classical Newton—Puiseux algorithm constructs the roots of the polynomial
f in the field © using the method of Newton broken lines. Namely let y; =
Zi20 Yj,iX 09 be a root of f where all Yji € E, ajo < aj1 < Qj2 < ..., all
aji € é Z for some 1 < e; < d (to fix e; we assume that it is minimal possible).
Then for every r > 0 the pair (y;,, ;) can be found considering the Newton
broken line of the polynomial

Y- Z Y;,i X

oi<r

This is an essence of the Newton—Puiseux algorithm.

Now the field K; = k((X))[y;] = k;((7j)) where k; the field of residues of
the field K; and 7; = X1/¢ is a uniformizing element of the field K. The field
k; is a finite extension of the field k and generated over k by all the elements y; ;
(actually by a finite number of them). The degree [k; : k] = f; < d. The degree of
the minimal polynomial of the element y; over k((X)) is equal to fje;.
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In what follows we suppose that char(k) = p > 0. Then there are difficulties
in comparison with the case char(k) = 0. First of all one can not describe the
field 2 = k((X)) in a simple way. Namely, (1) does not hold. More than that,
let y; € € be a root of the polynomial f. Then in general one can not choose an
element 7 € (2 such that the root y; € k((m)) (for this fixed j).

Still the field K; = k((X))[y;] has a discrete valuation
1
ord : K; — e—ZU {+o0}
J

such that ord(X) = 1 and ord(n;) = 1/e; for a uniformizing element 7; of the field
K. The residue field k; of the field K; with respect to this valuation is a finite
(not necessarily separable!) extension of the field k of degree f;. Similarly to the
case of zero—characteristic the degree of the minimal polynomial of the element y;
over k((X)) is equal to f;e;. There is a system of representatives 3; of the field k;
in K;. We shall assume without loss of generality that ¥; D k and X; is a linear
space over k (in general one can not choose X; to be an algebra over k). Denote
by ks the separable closure of the field k. Then the field k, Nk; C K. So one can
assume that ks N k; C ;. Now the root y; can be represented as a sum of the
infinite series

yi= Y Y, (2)

i0<i€Z

where all y;; € ¥j, y;4, # 0. The field k; is generated over k by all the residues
of the elements y;;, 7 = 4.

So the final aim of a generalization of the Newton—Puiseux algorithm for
nonzero characteristic is to construct for every root y; of the polynomial f a
uniformizing element 7;, a system of representatives ¥, and the expansion (2).
More precisely, to obtain (2) it is sufficient to construct all the elements y;, € 3;
for ig <7 < 14+ ord(A) (we assume that ord(A) is known). After that subsequent
elements y;,; can be found in a simple way using a variant of the Hensel lemma.

Unfortunately one can not obtain at once X; and 7;. So we construct a finite
number of elements zi,zo,..., 71,72,... (they depend on y;; in what follows j
is arbitrary but fixed) satisfying the following properties. For every m the orders
ord(zm) = am/(bmp®™), where GCD (am,p) = 1, GCD (by,,p) = 1 and s, >
Sm—1 (we put so = 0). Further, for every m denote by 7,, the residue of the
element 7,,. The the field kq[7,. .., 7,,] is purely inseparable over the field k; and
has the degree p™™ over kg where 1 < ry,, € Z and 1y, > r,,—1 (we put 79 = 0).

Set w(0) = v(0) = w(l) = v(1) = 0, y1 = y;. At the beginning of the ¢-th
step of the algorithm the elements 21, 22,...,2y, 1,72, ..., N and Y, are known.
Here the integer ¢ > 1 and we shall write w = w(q), v = v(g). We have

v(g—1)<v(g) <vl@—1)+1, w(g—1) <w(Q) <w(g—1)+1,
(v(g —1),w(g = 1)) # (v(q), w(q)) for ¢=>2.

Put u=u(q) = su(g) = Suig-1) T Tw(g) = Twig-1)-
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Then using Newton broken lines we construct the expansion

TP — D 7L TP P R | T
Y = § : YaryiesividiseduX 2L oo 20+ gt (3)
(yi15eesin,J1se s fw) EA

where

(i) A is a finite (or empty) subset of Q x Z*** (depending on q),

(ii) 0 < jm < p'™™ "1 for all 1 < m < w,

(iii) there is an integer a,, such that a,, < iy, < ap +p°m -1 foralll <m < v
(these integers a,, depend on ¢ and y;; in this extended abstract we don’t
explain the sense of introducing a,,),

(iv) a=p/v€Q, B,y €Z,and GCD (v,p) =1,

(v) for every (o, i1,... 00, J1,---,jw) € A the element 0 # Yo iy, iy j1,...jw € Ks-

(vi) for any pairwise distinct (o, i1, ..., 0y G155 Jw), (&8, oy il, 1y oy Joy
A either (j1,...,Jw) # (J1s-- 1 Jw) OF @+ 321 gy im@m/(bmp™™) # a
Elgmgv i@/ (bmp®™).

(vii) For every (a,i1,...,%,J1,---,jw) € A

'~ —r

S
+

a+ Z imm /(b p®™) < min{ord(gg+1),ord(A) + 1},

1<m<w

(viii) the number of elements #A is maximal possible, i.e., there is not a similar
expansion with A’ in place of A satisfying (i)—(vii) and such that #A" > #A.

If ord(yg+1) < ord(A) + 1 then using the element y,41 one can construct
Zy+1 OF M1 (may be both of them), define v(g+ 1), w(g+ 1) and proceed to the
next (q + 1)-th step.

If ord(yq+1) = ord(A)+1 then the considered ¢-th step is final and after that
one can construct ¥;, m; and expansion (2)

Actually this algorithm is canonical. More than that, it is natural to consider
the family of expansions (3) for all ¢ as a generalization for nonzero characteristic
of one expansion (1) for zero characteristic. Of course we omit details here.

Assume that f € k[X,Y] and the field k is finitely generated over a primi-
tive subfield. Then the interesting problem is to estimate the complexity of this
algorithm and obtain the results in nonzero characteristic similar to [1], [2].
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