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Abstract. We demonstrate that explicit highly efficient formulas of motion
of a freely rotating rigid body, as observed from an inertial frame, might be
obtained (only) after exploring (all) the “symmetries” of its motion. We shall
disclose the marvel of Galois’ construction (which had evaded Poinsot) behind
the final step towards a conclusive analytic solution!

Introduction
Vladimir Arnold discussed “the motion of a rigid body, in the absence of outside
forces”. He wrote, in [5, p. 146],1 that

“The second revolution will be exactly like the first; if α = 2πp/q, the motion
is completely periodic; if the angle is not commensurable with 2π, the body will
never return to its initial state.”
Arnold is referring to Poinsot’s construction, which (geometrically) describes the
“trajectory” of the “tip” of the angular velocity of a freely moving rigid body.
The said angle α is the angle of rotation of the body about the (fixed) angular
momentum as the angular velocity (pseudo) vector returns to its initial state in
body’s (rotating) frame. Aside from implicitly presuming (unknown) integers,
neither in the Russian nor in the English edition, did Arnold tell us what p and q
were. He told us nothing more on calculating α. Lev Landau, on the other hand,
did not undermine the calculation of that angle, nor did he divert our attention
to “philosophical” statements concerning eternity, but honestly (twice) admitted
the “complexity” in [10, p. 119],2 and provided further reference. One might go
on to trace this issue back to the tragedy when Poinsot joined those who failed
to appreciate the exceptional significance of Galois’ contributions (in uniting

1The next (translated) statement appears on page 130 of the third Russian edition (1989).
2The confession is (twice) made on page 155 of the fourth Russian edition (1988).
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algebra with analysis), and (consequently!)3 failed to arrive at an explicit
formula for a (body) rotation matrix as a function of time. And, in particular, an
explicit formula for calculating the rotation angle (which Arnold had denoted by
α) remained out of reach!

Key formulas and calculations
Let A, B and C denote the principal moments of inertia, whereas let w and m
denote the angular velocity and the (fixed) angular momentum, respectively. We
shall exploit the same letters to denote the corresponding magnitudes, so that
consistently with this notation we might express that square of the angular speed
as w2 = w·w and the square of the (constant) magnitude of the angular momentum
as m2 = m · m, where the dot (·) denotes the scalar product. Let h denote the
(constant) scalar product m ·w, that is twice the kinetic energy. We might initially
assume that the moments of inertia A, B and C are pairwise distinct, and we
might impose the additional assumption that A2B2C2 6= 0, where

A2 = Ah−m2, B2 = Bh−m2, C2 = Ch−m2.

There are two general cases here, namely, the case B2 < 0 for which we impose
the ordering A < B < C, and the case B2 > 0 for which we impose the ordering
A > B > C. The projection of the angular velocity w onto body’s rotating frame
is (doubly) periodic, with quarter period

T =
√
ABC π

2M
(√

(B − C)A2,
√

(A− C)B2

) ,
where M(x, y) is arithmetic-geometric mean of x and y. Evidently, the scalar
function w2 is, as well, (doubly) periodic (in any reference frame). Now and here,
on this PCA 2016, April 18-23, annual conference in St. Petersburg, Russia, we
shall present a simple and powerful formula (which we must attribute to Évariste
Galois!)4 for (highly efficiently) calculating the afore-discussed angle α as
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3Poinsot, having deprived himself from realizing the crucial relevance of Galois’ (deeply
constructive) ideas for relating the angular velocity to a (corresponding) rotation matrix, was
unable to carry out that last necessary step towards the final solution!
4Justice will be served if we attribute that said last step (which could not be accomplished by
Poinsot) to Galois himself, who would have had undoubtedly carried it out had he been given
a chance! Relevant details on Galois’ amazing (yet far from fully appreciated) contribution to
elliptic functions and modular equations are given in [3].
5Observe that the function α is homogeneous of degree 0 whether viewed as a function of the
(principal) moments of inertia (for fixed energy and momentum), or as a function of h and m2
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where the function N(x, a, b, c) is defined recursively via the relation

N(x, a, b, c) = N
(
σ(x, 1), σ(x, a, c), σ(x, b, c), σ(x, c)

)
,

σ(x, y) := σ(x, y, y), σ(x, y, z) := (
√
x+ y) (

√
x+ z)

2 (y + z)
√
x

.

The value of this recursive function is the limit obtained from successively applying
(linear) fractional transformations L(·, a, b, c) either to (successive) first arguments
x, thereby generating the sequence {L(x, a, b, c) := (b−c)(x−a)/((b−a)(x−c))}, or
to the (constant) value 1,6 generating the sequence {L(1, a, b, c)}. Both sequences
converge quadratically to their common point, as shown in [1].

Many limiting cases of the formula for calculating α might (and must) be
considered but the first (and foremost) is the critical case with strictly vanishing
B2.7 This case corresponds to a critical separating solution which is missed by
Arnold and many others who (innocently) presumed that the case with α = ∞
might be safely ignored. We are now being vividly reminded of this omission
after a striking observation, made in 1985 (June 25th) by the Soviet cosmonaut
Vladimir Dzhanibekov, of a motion in proximity to a critical separating solution.
A video demonstration from an orbiting space station is provided in [7]. That
observation had gotten the attention of Terence Tao, who shared his
interpretation of the phenomenon publicly on Google+ [9]. Another special case
of motion was popularized by Richard Feynman in [8], and was subsequently
referred to as the “Feynman’s wobbling plate”. The declared (by Feynman) spin
to wobble ratio (2:1) was corrected by Benjamin Chao in 1989 (after Feynman’s
death) in [6]:

“A torque free plate wobbles twice as fast as it spins when the wobble angle
is slight. The ratio of spin to wobble rates is 1:2 not 2:1!”.8
Of course, another limiting case of our formula readily applies to an axially
symmetric rigid body, rotating about its axis of symmetry, that is,
Ch = m2 = C2w2 and C = λB = λA, with (constant) λ ∈ [0, 2]. The spin to
wobble ratio is then 1:λ. It is, indeed, 1:2 for a “flat plate”,9 and 1:0 for a “rod”
(with vanishing C), as was also rightfully noted by Chao. We might further
formalize the definition of the spin to wobble ratio as 4hT/(mα), in order to
extend it to non-symmetric rigid bodies where we observe that the said ratio is

(for fixed moments of inertia). This property might be expressed via the relation

α
(
λA, λB, λC, µh, µm2

)
= α

(
A,B,C, h,m2

)
,

where λ and µ might (unnecessarily!) be restricted to be positive.
6The sequence of first arguments {x} converges quadratically to 1.
7With B, as we must reemphasize, is the strictly(!) middle moment of inertia.
8Having investigated the so-called Chandler wobble phenomenon, Chao knew the correct ratio
before he came across Feynman’s error.
9The ratio is (exactly) 1:2 (only) when “the wobble angle” is strictly zero, that is, when the plate
“does not wobble”, not unlike the case where the “small-angle approximation of the period of
the simple pendulum” turns out being exact (and unambiguously defined!) for calculating the
period of the “resting” pendulum, as explained in [2].
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strictly less than 1 if B2 < 0. This ratio nears 1 for that flipping nut (which
Dzhanibekov observed). The limit ratio at 1 is actually attained at a critical
separating solution (as B2 strictly vanishes)10. With this formally extended
definition of the ratio, we are ready to assert that it (as ought be) is 1 for a
“totally symmetric” rigid body (with A = B = C).

Conclusion
Two distinct classes of motion of a freely moving rigid body are separated by
critical solutions,11 which we shall explicitly demonstrate at this conference. The
belief that uniqueness of solution (corresponding to a unique trajectory of
motion) ought be determined by initial motion conditions will be scrutinized!
Most significantly, the presented formula enables not merely calculating the angle
α but might readily be adapted for (highly efficiently) constructing an orthogonal
transition matrix from body’s (rotating) frame to observer’s (fixed) frame,12 with
the time domain (necessarily) compactified by adjoining the point at (complex)
infinity, as we were incessantly reminded by Dmitry Abrarov (as clarified in [2]).
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