Software Simulation as a Means to Estimate Fea-
sibility of Real-Time Software Applications

Sergey Baranov and Victor Nikiforov

Abstract. An approach to study the behavior of real-time multi-task appli-
cations is described based on a software simulation tool written in the Forth
programming language.

Introduction

Software applications for real-time systems (RTS) are usually built as collections
of tasks which are sequential programs closed w.r.t. to control flow. During appli-
cation run its tasks share common system resources: the executive ones (processors
and processor cores of multi-core processors) and informational ones — global data
arrays, interface registers of peripheral devices, elements of human-machine inter-
face, etc. Access to executive resources is governed by the scheduling mode in use,
while for access to informational resources certain access protocols are used.

A key requirement to an RTS software application is guaranteed on-time exe-
cution of each of its tasks (called "application feasibility") in all correct situations
for the application to run. Application feasibility may be checked either through
an analytical estimation of the response time for each application task, or through
simulation of the application run with an appropriate software tool. Verifying the
correctness of a particular situation is another important task beyond the scope
of this presentation.

For an RTS designed to run on a conventional single-core processor exact
analytical estimations of their feasibility exist; however, applying these methods
to RTS on multi-core processors provides substantially inexact results which are
too pessimistic, and no exact analytical estimates are known by now.

In this presentation a software simulation tool is described which ensures a
more exact estimation of application feasibility for a RTS application on a multi-
core platform under various combinations of scheduling modes and protocols of
access to shared resources than the known analytical methods.

2 Sergey Baranov and Victor Nikiforov

1. The Problem

A characteristic feature of an RTS is the requirement for on-time execution, usually
expressed as a requirement that for each task 7; the longevity r(77) of any of its
jobs 7/ shall not exceed some pre-defined deadline value D;: Vi, j(r(t/) < D).
With the notion of the task response time R; = max{r(r}),r(7?),...} this may be
reformulated as Vi(R; < D;) with any allowable scenario of system events and is
often interpreted as the property of feasibility of the given multi-task application.
To check application feasibility, various structural models of its tasks are built and
analyzed to provide reliable estimates for the response times of the application
tasks, taking into account all impacting factors.

Software simulation is an acknowledged method to check feasibility of real-
time multi-task applications. This paper describes an experience of constructing
such simulator in Forth with the VFX Forth for Windows [1] as a development
platform. A freeware option for the platform is gForth [2]. Forth was selected as
the implementations language due to the flexibility it provides for implementing
programming solutions. The simulator employs a simple model of a multi-task
application under study which may use several scheduling modes with various
task priorities for allocation of the processor computational resource and several
access protocols to access shared informational resources. The simulator helps to
study multi-task application behavior and check whether a given combination of
the scheduling mode and access protocol guarantees application feasibility under
the given processor performance and system event scenarios. It may also identify
the minimal processor performance which still ensures application feasibility under
the given conditions.

By now, the nomenclature of scheduling modes and access protocols imple-
mented in the simulator consists of two classical scheduling modes — RM (rate
monotonic) and EDF (earliest deadline first) — and three access protocols — NI
(no inheritance), BI (basic inheritance), and PI (priority inheritance). However, it
may be further extended to simulate systems with other scheduling modes on a
multi-processor and/or multi-core platform and other protocols of access to shared
informational resources [3].

2. Solution

The computer program RTMT (Real-Time Multi-Tasking) [4] was designed to
study various combinations of scheduling modes and protocols access to shared in-
formational resources in real-time multi-task applications for a multi-core platform
[4]. A particular interest is how these combinations impact application density [5].
Obtained characteristics determine an optimal selection for application parameter
realization which ensure application feasibility under all possible scenarios of their
correct interaction with the external environment.

Simulation is based on components of four kinds: resources, tasks, jobs, and
events. Resources and tasks are entities of the application under study; jobs and

RTS Feasibility 3

events are entities created and operated on by the simulator. Resources and tasks
are also represented within the simulator with respective entities. The overall sim-
ulation process is governed by the structure Eventlist which contains events sorted
w.r.t. their timestamps, and the structure Joblist which contains ready-to-run jobs
sorted w.r.t. their current priorities. The overall simulation structure is represented
in Figure 1.

EventList

| Configure and initialize

me- ime- me-

sake sake sake

Whiles event event event
condition & % %

OK? time=t, time=t, time=t,

t<t,<t<...

Events: Activate a task (create a new job)
Lock a resource
Unlock a resource
Terminate a job

Job, H Job, |—> Jobs |—>

J Prio(Job,)zPrio(Job,)=Prio(Jobs)z...

Advance time
Process events
Process jobs

JobList

Terminate simulation
and print-out results

A (#Jobs < JobLimit) A

T A S Job: Consume processor time by task segment
(#Violations < ViolationsLimit)

[While—condition: (Time < TimeLimit)
and add a new event to the EventList

FIGURE 1. The overall structure of the RTMT simulator

The simulation internal loop considers considers time gaps between two suc-
cessive groups of same-time events in Ewventlist one after another, starting from
time=0. The gap size is determined through the minimum of the upper bound
of the time yet to be consumed and the time-stamp of the next same-time event
group.

For all current jobs at the gap start their counts of consumed time are in-
creased by the gap size, while the counts of yet-to-be-consumed time are respec-
tively decreased. and if this count reaches zero, then a new event is added to
FEventlist — to terminate this job at the respective time moment. Then all events
from the same-time-event group are processed which may change the contents of
Joblist. Upon completion of processing all these events, the updated contents of Jp-
blist is considered and RTMT transits to the next same-time event group. Thus suc-
cessive simulation iterations advance the system time and terminate when the spec-
ified time limit is exhausted (Time < TimeLimit) or when the overall number of
created jobs reaches the specified limit (#Jobs < JobLimi) or the total number of
registered response time violations is reached (#Violations < ViolationsLimit),
whatever occurs earlier. The described internal loop is embedded into the main
loop controlled by the parameter of application hardness H for which its bounds

4 Sergey Baranov and Victor Nikiforov

and stride are specified. It turned out that it’s more convenient to specifiy the
value 1/H from which H is recalculated.

Conclusion

The simulator was written in Forth with VFX Forth for Windows, version 4.70,
provided to the author at the courtesy of MPE, and is just 985 lines of code under
the respective coding standards. It uses only fixed-point arithmetic and works
remarkably fast on a PC. To avoid memory overflow, the simulator uses its own
simple subsystem for memory allocation and reuse for chained list elements, jobs
and events. Further work will be focused on improving the user interface, extending
the nomenclature of scheduling modes and access protocols of this simulator, and
transition to simulation of multi-core and multiprocessor platforms, as well as
running more experiments with models of real-time multi-task applications.

References

[1] VFX Forth for Windows. User manual. Manual revision 4.70, 19 August 2014. Micro-
Processor Engineering Limited, Southampton, 2014.

[2] gForth. Free Software Foundation, Inc., (2014), available at https://www.gnu.org/
software/gforth/.

[3] B. Andersson, S. Baruah, and J. Jonsson, Static-Priority Scheduling on Multiproces-
sors. Proc. of 22" IEEE Real-Time Systems Symposium. London (2001), pp.193-202.

[4] Baranov S.N. The Program RTMT for Simulation of Multi-Task Application Run.
Certificate of official registration of a computer program No0.201661395, 16 March
2016 (RU), (in Russian).

[5] Baranov, S., Nikiforov, V. Density of Multi-Task Real-Time Applications. Proc. As-
sociation FRUCT-17. Yaroslavl, (2015), pp.9-15.

Sergey Baranov

Lab.of information and computing systems and software engineering
SPIIRAS

St. Petersburg, Russia

e-mail: SNBaranov@iias.spb.su

Victor Nikiforov

Lab.of information and computing systems and software engineering
SPIIRAS

St. Petersburg, Russia

e-mail: nik@iias.spb.su

