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Abstract. Multidimensional generalizations of the Weierstrass normal form
are considered, depending on the Waring decomposition. The straightforward
generalization exists for Fermat-type cubic forms, but does not exist for the
general cubic forms in four variables. On the other hand, if a cubic form
has a sufficiently small rank, then the corresponding hypersurface is invariant
under a nonidentity birational involution of the complex projective space. The
involution can be calculated in terms of radicals.

Let us focus on cubic hypersurfaces that are invariant under a nonidentity
birational involution of the complex projective space. Throughout the paper all
coefficients are denoted by small Greek letters. A form means a homogeneous
polynomial over the field of complex numbers. A hypersurface means a projective
variety of codimension one. A hypersurface given by the form f is smooth if its
gradient ∇f is nonzero outside of the origin; otherwise it is singular. Two forms
f and g are equivalent to each other if there exists a nondegenerate linear trans-
formation J such that f(x) = g(Jx). A cubic form in three variables is equivalent
to the Weierstrass normal form y20y2 + y31 + αy1y

2
2 + βy32 . It is invariant under the

linear involution (y0, y1, y2) 7→ (−y0, y1, y2). The rank of a form f of degree d is the
minimal number of linear forms needed to represent f as a sum of d-powers. This
sum is known as the Waring decomposition. For example, each ternary cubic form
can be decomposed as the sum of five cubes (Sylvester Pentahedral Theorem).
The next example shows the relationship between the Weierstrass normal form
and the Waring decomposition. Let us consider the linear transformation given by
two equations x0 = 1

6y1 + y0 and x1 = 1
6y1 − y0. Then x

3
0 + x31 = y20y1 +

1
108y

3
1 .

Theorem 1. The general cubic form in four variables is not equivalent to any form
of the type y20y3 + g(y1, y2, y3).

Proof. Let us suppose the general cubic form f in four variables is equivalent to
a form of the type y20y3 + g(y1, y2, y3). One can assume that the surface given by
the equation f = 0 is smooth. The requirement of smoothness does not reduce the
dimension of the set of forms. The curve given by the equation g = 0 is smooth.
Thus, the form g is equivalent to the second normal form g = z31+z
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with replacement of three variables y1, y2, and y3 by linear forms in three variables
z1, z2, and z3. Then f = y20(ρ

2
1z1 + ρ22z2 + ρ23z3) + z31 + z32 + z33 − 3λz1z2z3, where

at least one of the coefficients ρ1, ρ2, or ρ3 is nonzero. Otherwise, the form would
not depend on the variable y0; therefore the point with homogeneous coordinates
[1 : 0 : 0 : 0] would be a singular point of the surface. One can assume that
ρ3 6= 0. Replacing the variable y0 = ρ3z0 yields an equivalent cubic form of the
type f = z20(µ1z1 + µ2z2 + z3) + z31 + z32 + z33 − 3λz1z2z3. So a cubic form in four
variables with at most 20 monomials is defined by a matrix with 16 entries and
three parameters λ, µ1, and µ2. Mapping of the pair consisting of the form f(x)
and the matrix J to another form f(Jx) obtained by the linear transformation
of coordinates defines a regular surjection from the 19-dimensional affine complex
space onto an open set of the 20-dimensional complex space. There is a small
polydisc such that the map is bijective. This contradicts Brouwer’s theorem. �

Theorem 2. Given the cubic form f = x30 + · · ·+ x3n + (α0x0 + · · ·+ αnxn)
3 in at

least three variables x0,. . . , xn. There exists a transformation of coordinates such
that f is equal to the rational function y20yn + g(y1, . . . , yn) in the complement of
a hyperplane given by the linear equation yn = 0 in at most three variables x0, x1,
and xn. The transformation is the identity map for all coordinates except three;
moreover it can be calculated in terms of radicals.

Proof. Let us consider the linear form ` = α0x0 + · · · + αnxn and the Hessian
matrix H, whose entries are equal to ∂2f

∂xi∂xj
. The matrix H is equal to the sum

of the diagonal matrix diag(6x0, . . . , 6xn) and the matrix with entries 6αiαj`.
Let us consider a point u with coordinates ui = 0 for all 2 ≤ i ≤ n − 1 such
that it is not the origin, and both `(u) and f(u) vanish. Its coordinates can be
calculated in terms of radicals. The rank of the matrix H(u) is at most three and
does not increase under a linear transformation of the coordinates. Let us consider
the quadratic form h = u0x

2
0 + u1x

2
1 + unx

2
n with the matrix H(u). It vanishes at

the point u because h(u) = f(u) = 0; likewise both gradients ∇f(u) and ∇h(u)
are collinear and nonzero. Both quadric h = 0 and cubic f = 0 have a common
tangent hyperplane with defining linear form zn = u20x0 + u21x1 + u2nxn up to a
nonzero factor. A linear subspace of codimension two lies on the quadric h = 0.
It is defined by two linear equations z1 = zn = 0 for some linear form z1 in three
variables x0, x1, and xn. Let us choose an independent linear form z0(x0, x1, xn)
such that z0(u0, u1, un) 6= 0. Let us set at last zi = xi for all indices 2 ≤ i ≤ n− 1.
The linear transformation is nondegenerate. Thus, the set {zi} is a basis for the
dual space. If both u0 and un are nonzero, then one can choose the forms z0 = x0
and z1 = u1x0 − u0x1.

The restriction of h to the subspace vanishes identically. Thus, the cubic form
is equal to f = ρ20z

2
0zn + 2ρ0z0(ρ1z1 + · · · + ρnzn)zn + 2τρ0z0z

2
1 + s(z1, . . . , zn),

where ρk and τ are complex numbers. As the cubic is not a cone, ρ0 6= 0.
In case τ = 0, the cubic form can be transformed to f = y20yn+g(y1, . . . , yn),

where y0 = ρ0z0 + ρ1z1 + · · ·+ ρnzn and for all indices i 6= 0 we set yi = zi.
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In case τ 6= 0, if zn 6= 0, then f is equal to

f = ρ20z
2
0zn + 2ρ0z0

(
ρ1z1 + · · ·+ ρnzn + τ

z21
zn

)
zn + s(z1, . . . , zn).

Let us set y0 = ρ0z0 + ρ1z1 + · · · + ρnzn + τ
z2
1

zn
and for all indices i 6= 0 we set

yi = zi. Then f = y20yn + g(y1, . . . , yn), but y0 and g are rational functions. Their
denominators are powers of a linear form u20x0 + u21x1 + u2nxn. �

Remark. There are 1
6 (n

3 − n) choices of three coordinates xi, xj , and xk instead
of x0, x1, and xn.

Theorem 3. Given the cubic form f = x30 + · · ·+ x3n + (α0x0 + · · ·+ αnxn)
3 in at

least three variables x0,. . . , xn. The corresponding cubic hypersurface is invariant
under a nonidentity birational involution of the ambient projective space.

Proof. According to Theorem 2, there is a birational map ϕ from the cubic hyper-
surface f = 0 to a hypersurface, which is invariant under the action of the linear
involution [y0 : y1 : · · · : yn] 7→ [−y0 : y1 : · · · : yn]. The composition of the map ϕ,
the involution, and ϕ−1 yields a sought involution. �

Remark. All cubic surfaces are rational. Thus, a large set of birational involutions
exists for any cubic surface. If there is a regular involution of an open set of the
surface with a unique singular point, then the point is fixed under the involution.
In this way, one can either localize the singular point, or verify smoothness of a
cubic surface having at most one singular point. The requirement for uniqueness
of the singular point is significant. Otherwise, two singular points can be mapped
one into another under the involution.

The following theorem improves the result from [1] in case of cubic hypersur-
faces. The homogeneous coordinates of (−1, 1)-points are equal to [±1 : · · · : ±1 : 1]
up to a common nonzero factor.

Theorem 4. Given the cubic form f = x30+· · ·+x3n+(α0x0+· · ·+αnxn)
3 in at least

three variables x0,. . . , xn, where all the coefficients αk are nonzero. There exists a
one-to-one correspondence between singular points of the cubic hypersurface f = 0
and (−1, 1)-points belonging to the hyperplane defined by the linear form h =

β0y0 + · · ·+ βnyn + yn+1 in n+ 2 variables with the coefficients βk =
√
−α3

k.

Proof. Let us consider the cubic form g = β0y
3
0 + · · · + βny

3
n + y3n+1. Since all

the coefficients βk are nonzero, the hypersurface g = 0 is smooth. Its hyperplane
section is projectively equivalent to the hypersurface f = 0. If both forms h and
g vanish simultaneously at a (−1, 1)-point, then the hyperplane is tangent to the
hypersurface g = 0 at this point. Thus, the section is singular.

At a singular point of the section, the hyperplane h = 0 coincides with the
tangent hyperplane to the hypersurface f = 0. Since all the coefficients βk are
nonzero, both gradients ∇h and ∇g can be collinear only at the points whose
coordinates satisfy the system of the equations x2k = x2j for all indices k and j. All
the points are (−1, 1)-points. �
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In accordance with the Alexander–Hirschowitz theorem [2], the rank of the
general cubic form in four variables is equal to five. It is exactly one more than
the number of variables. If the Waring decomposition is known, then Theorem 4
solves the system for cubic surface by means of an auxiliary combinatorial task
that is equivalent to the set partition problem. Unfortunately, it is hard to find
a (−1, 1)-point belonging to the hyperplane in high dimensions [3]. On the other
hand, one can find (−1, 1)-points belonging to the hyperplane given by a linear
form with integer coefficients near zero, using dynamic programming.
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