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• Two-qubit quantum states • Generally, the state of a two-qubit quantum system
is described by the density matrix which has the following general structure

% =
1

4

I2 ⊗ I2 + 3∑
i=1

aiσi ⊗ I2 +
3∑

i=1

biI2 ⊗ σi +
3∑

i,j=1

cijσi ⊗ σj

 . (1)

where σ1, sigma2, sigma3 are the Pauli matrices, and I2 is the unit 2× 2 matrix.
The 15 real parameters ai, bi and cij , i, j = 1, 2, 3 , define the space

W := { (ai, bj , ckl) ∈ R15 | i, j, k, l = 1, 2, 3 } , (2)

and the corresponding SU(2)×SU(2)−invariant polynomials accumulate all relevant
information on the quantum two-qubit entanglement.

The 15-dimensional space (2) is subject to the physical constraints coming
from the semipositivity condition imposed on the density matrix:

% ≥ 0 . (3)

Explicitly, the semipositivity condition (3) reads as a set of polynomial inequalities
in the fifteen variables ai, bi and cij , and thereby determines a semialgebraic
variety of (2) (see, e.g., [11] and references therein).
• The research object • We study the special 7-dimensional subspace of (2),
the space of so-called X−states [1]. These states got such name due to the visual
similarity of the density matrix, whose non-zero entries lie only on the main and
minor (secondary) diagonals, with the Latin letter “X”:

%X :=


%11 0 0 %14
0 %22 %23 0
0 %32 %33 0
%41 0 0 %44

 . (4)

In (4) the diagonal entries are real numbers, while elements of the minor diagonal
are pairwise complex conjugated, %14 = %14 and %23 = %32 . Our interest to
this subspace of (2) is due to fact that many well-known states, e.g. the Bell
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states [2], Werner states [3], isotropic states [4] and maximally entangled mixed
states [5, 6] are particular subsets of the X−states. Since their introduction in
[1], many interesting properties of X−states have been established. Particularly,
it was shown that for a fixed set of eigenvalues the states of maximal concurrence,
negativity or relative entropy of entanglement are the X−states. 1

• Main results • Here we pose the question about the algebraic structure of the
local unitary polynomial invariants algebra corresponding to the X−states. More
precisely, the fate of generic SU(2)× SU(2)-invariant polynomial ring of 2-qubits
[8]–[11] under the restriction of the total 2-qubit state space to its subspace

WX := {w ∈W | c13 = c23 = c31 = c32 = 0 , ai = bi = 0 , i = 1, 2 }
will be discussed. Our research is based on the classical invariant theory [13] and its
computational aspects [14, 15] based on computer algebra. The quotient structure
of the ring obtained as a result of restriction will be determined. Furthermore,
we establish an injective homomorphism between this ring and the and the ring
R[WX ]SO(2)×SO(2) of local unitary invariant polynomials for the 2-qubitX−states.
In doing so, we show that the latter ring is freely generated by five homogeneous
invariants of degrees 1,1,1,2,2.
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