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e Two-qubit quantum states e Generally, the state of a two-qubit quantum system
is described by the density matrix which has the following general structure

3 3 3
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Q:Z 12®12+Zai0'i®12+2b112®0'i+Zcij0i®0'j . (1)
i—1 i=1 ij=1

where o1, sigmas, sigmas are the Pauli matrices, and I5 is the unit 2 x 2 matrix.
The 15 real parameters a;, b; and c;;, ,j = 1,2,3, define the space

W::{(a’i,bjackl)€R15|i7j)k7l:17273}7 (2)

and the corresponding SU(2) x SU (2)—invariant polynomials accumulate all relevant
information on the quantum two-qubit entanglement.

The 15-dimensional space (2) is subject to the physical constraints coming
from the semipositivity condition imposed on the density matrix:

0>0. (3)

Explicitly, the semipositivity condition (3) reads as a set of polynomial inequalities
in the fifteen variables a;,b; and c;;, and thereby determines a semialgebraic
variety of (2) (see, e.g., [11] and references therein).

e The research object ¢ We study the special 7-dimensional subspace of (2),
the space of so-called X —states [1]. These states got such name due to the visual
similarity of the density matrix, whose non-zero entries lie only on the main and
minor (secondary) diagonals, with the Latin letter “X”:

ou 0 0 o
0 022 023 0
= . 4
ox 0 o032 o033 0 )
o1 0 0 ou
In (4) the diagonal entries are real numbers, while elements of the minor diagonal

are pairwise complex conjugated, gi4 = 04 and 23 = D3, . Our interest to
this subspace of (2) is due to fact that many well-known states, e.g. the Bell
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states [2], Werner states [3], isotropic states [4] and maximally entangled mixed
states [5, 6] are particular subsets of the X —states. Since their introduction in

[1], many interesting properties of X —states have been established. Particularly,
it was shown that for a fixed set of eigenvalues the states of maximal concurrence,
negativity or relative entropy of entanglement are the X —states. !

e Main results e Here we pose the question about the algebraic structure of the
local unitary polynomial invariants algebra corresponding to the X —states. More
precisely, the fate of generic SU(2) x SU(2)-invariant polynomial ring of 2-qubits
[8]-[11] under the restriction of the total 2-qubit state space to its subspace

Wx:={weW|csg=ca3=can=c32=0,a,=b;=0, i=1,2}

will be discussed. Our research is based on the classical invariant theory [13] and its
computational aspects [14, 15] based on computer algebra. The quotient structure
of the ring obtained as a result of restriction will be determined. Furthermore,
we establish an injective homomorphism between this ring and the and the ring
R[Wx]® 0(2)xS0(2) of Jocal unitary invariant polynomials for the 2-qubit X —states.
In doing so, we show that the latter ring is freely generated by five homogeneous
invariants of degrees 1,1,1,2,2.
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