Coloring triangulated surfaces

Andrei Malyutin

Abstract. A coloring of a singular triangulation is a partition of the set of its open simplices into classes (colors). A set of k colorings of one and the same triangulation is called a k-layered coloring. It turned out that (k + m)-dimensional manifolds and pseudomanifolds can be coded by k-layered colorings of triangulated m-dimensional manifolds. In particular, n-dimensional (pseudo)manifolds can be coded by (n - 1)-layered colorings of sets of circles. In the first place, we investigate the coding of 3-pseudomanifolds by colorings of triangulated surfaces. Joint research with E. Fominykh and A. Vesnin.

Singular triangulations (simplicial CW-complexes). Let X be a simplicial complex and let Φ be a collection of affine homeomorphisms between some of the faces of X. Following [Mat03, p. 11], we refer to the pair (X, Φ) as to a *face identification scheme* (a *scheme*). A scheme (X, Φ) is called *inadmissible* if homeomorphisms in Φ induce a non-identity automorphism on a face in X. Otherwise, the scheme is called *admissible*. The *quotient space* $Q(X, \Phi)$ of the scheme (X, Φ) is defined as the space obtained from X by identification of faces via the homeomorphisms in Φ . The quotient space of an admissible scheme is naturally endowed with a structure of CW-complex. A CW-complex is said to be *simplicial* if it can be obtained as a quotient space of an admissible scheme.¹ The cell structure of a simplicial CWcomplex is called a *singular triangulation*. A simplicial CW-complex X is said to be a *triangulated n-pseudomanifold* if removing of vertices (0-dimensional cell) from X yields an n-manifold.

Colorings. By a *coloring* of a CW-complex X we mean a map $\chi: X \to C$ (where C is an arbitrary set, called the set of *colors*) which is constant on each open cell of X. We say that a coloring of a CW-complex is *trivial* if no two distinct open cells have the same color. We say that a coloring $\chi: X \to C$ of a topological space X is *coherent* if for each pair of points x, y of the same color there exist arbitrarily small open neighbourhoods U_x and U_y of x and y with a color-preserving homeomorphism $U_x \to U_y$. The trivial coloring is coherent. We say that a coloring

Supported by RFBR grant 16-01-00609.

¹Cf. Δ-complexes in [Hat02, p. 103], side-pairing in [Rat94, p. 435], pseudocomplexes, etc.

 $\chi \colon S \to \mathcal{C}$ of a simplicial CW-complex S is *regular* if for each of its colors $C \in \mathcal{C}$ there exists an integer d such that $\chi^{-1}(C)$ consists of d+2 open cells of dimension d.

Derived complexes. Let S be a simplicial CW-complex. Let $V \subset S$ be the set of vertices of S, let $L_2(V)$ be the link of V in the second barycentric subdivision of S, let $\lambda(V)$ be the underlying topological space of $L_2(V)$ with CW-complex structure forgotten, and let $S^{\dagger} = \lambda^{\dagger}(V)$ be $\lambda(V)$ with the structure of CW-complex induced by that of S (that is, by the intersections with the cells of S). Clearly, the CW-complex S^{\dagger} is simplicial. We say that S^{\dagger} is the *derived* complex of S. If S is a triangulated n-pseudomanifold, then S^{\dagger} is an (n-1)-manifold. If S is a triangulated n-manifold, then S^{\dagger} is the union of (n-1)-spheres. Observe that a coloring of S^{\dagger} . A trivial coloring of S induces a coherent regular coloring of S^{\dagger} . This determines a map F_n from the set of (isomorphism classes of) triangulated n-pseudomanifolds without boundary to the set of (isomorphism classes of) coherent regular colorings of triangulated (n-1)-manifolds without boundary.

Theorem 1.

- 1. The map F_3 is injective.
- 2. The map F_3 is not surjective.

Partial colorings. By a *partial coloring* of a CW-complex X we mean a coloring $\chi: X \setminus V(X) \to C$, where V(X) is the set of vertices of X, such that χ is constant on open cells. Let π_2 be the natural forgetting map from the set of coherent regular colorings of singular triangulations on closed surfaces to the set of coherent regular *partial* colorings of singular triangulations on closed surfaces (the map π_2 'forgets' the colors of vertices).

Theorem 2.

1. The map π_2 is injective.

2. The map π_2 is not surjective.

References

[Hat02] A. Hatcher, Algebraic topology, Cambridge University Press, 2002.

- [Mat03] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms and Computation in Mathematics, vol. 9, Springer-Verlag, Berlin, 2003.
- [Rat94] John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics. vol. 149. Springer-Verlag, New York, 1994.

Andrei Malyutin St. Petersburg Department of Steklov Institute of Mathematics St. Petersburg, Russia e-mail: malyutin@pdmi.ras.ru