
Provable programming of algebra:
particular points, examples.

Sergei D. Meshveliani

Abstract. It is discussed an experience in provable programming of a com-
puter algebra library with using a purely functional language with dependent
types (Agda). There are given several examples illustrating particular points
of implementing the approach of constructive mathematics.

Keywords. constructive mathematics, computer algebra, dependent types.

1. Introduction

Applying the approach of constructive mathematics [2] [1] and technology of purely
functional programming with dependent types [5] makes it a fully adequate ap-
proach to programming computation in algebra, in mathematics. In particular
[3] [4] this 1) solves completely the problem of representing an algebraic domain
depending on a dynamic parameter, 2) makes mathematical definitions and for-
mal proofs an explicit part of a program, a part understood by the compiler and
automatically checked before the running time.

So far, we use Agda as a language with dependent types.
This thesis describes in examples some of interesting features of the construc-

tive-provable approach to programming algebra.

2. Example with termination proof

The type checker needs to verify termination for each function given in the pro-
gram, in order to follow constructive mathematics. The main tool for this is finding
an argument which is decreased in a certain syntactic ordering when the function
is applied recursively. For example, apply the unary coding for natural numbers,
with the constructor suc for the next number. Consider the program

This work is supported by the FANO project of the Russian Academy of Sciences, the project
registration No AAAA-A16-116021760039-0.



2 Sergei D. Meshveliani

0 + n = n

(suc m) + n = suc (m + n)

for summing natural numbers. The type checker decides that it is terminating,
because in the second line the left argument term ‘m’ for _+_ on the right hand
side is syntactically smaller than the argument (suc m) on the left hand side. For
more complex functions, the programmer is often supposed to help the type checker
by introducing the counter expression. The counter is syntactically decreased with
each recursive call. And the program needs to specify the result when the counter
turns zero. Consider the example for a provable program:

for any prime natural p find the next prime.
In reality, we tested the sieve method. But for this paper, let us consider the
simplest algorithm of searching-through. The primality notion for N is defined in
Agda as the function

IsPrime : N → Set

IsPrime p = p 6≡ 1 × (∀ {m n} → (m * n ≡ p) → m ≡ 1 ] n ≡ 1)

that returns a type. This type has a value in it when the argument p is prime. It
expresses the property “if m * n ≡ p, then m ≡ 1 or n ≡ 1”.

Assume the following simplest constructs. The algorithm _|?_ for deciding
divisibility is defined via division with remainder. The algorithm prime? for deciding
primality of n is defined by searching through all 1 < m < n with applying m |? n.
The algorithm firstFactor>1 finds for each n > 1 the first m > 1 that divides n. This
is done by searching through. Also it is proved the statement
n > 1 → IsPrime (firstFactor>1 n). Now, the function

nextPrime : ∀ p → IsPrime p →
(∃ \q → p < q × IsPrime q × IsFirstPrimeAfter q p)

needs to return q which is the first prime after p (and the corresponding witnesses).
Program it as search-through: test (prime? n) for n = 1+p, 2+p, ..., until is finds
a prime. To provide a termination proof, let us give an expression for any prime
b = bound p such that p < b. Then, add the counter expression cnt = b - n to the
search loop. The counter is decreased each time when n steps from n to suc n. If
a prime is not found earlier, and it turns cnt = 0, then n ≡ b occurs the needed
prime. With this, the type checker verifies termination.

And for b = bound p we need any expression such that the properties p < b

and IsPrime b have an easy constructive proof. Choose this:
bound p = let p0, p1, ..., p = all primes up to p

-- found by repeatedly applying ‘prime?’

a = p0 * p1 * ... * p

in

firstFactor>1 (1 + a)

Then, a constructive proof for that (bound p) is a prime greater than p is not difficult
to provide. With this, the program is verified. But it performs in a strange way at
run-time: (nextPrime 31) hangs for a very long time!

The reason for this is that the condition b - n =? 0 is very expensive to
check at run-time (see the algorithm for b). Its check is needed only to provide
(statically) a termination proof, it is not needed at run-time. But there is no way
to explain this to Agda, and this check gets into the executable program.



Provable programming of algebra 3

Improvement: apply the Bertrand – Chebyshev estimation —
“there exists a prime between p and 2*p”.
The counter of 2*p - n is compared fast to zero. But a proof for this bound

is large and complex! So: one bound is easy to prove but expensive to compute at
run-time, another bound is computed fast but is complex to prove. What has one
to put into the Agda program? The way out for (nextPrime p) is as follows.

Search-II:
first search before bound2 = 2*p. If the needed q is found, then stop.
Otherwise, search by new from 1+p up to (bound p).
This program 1) is verified, including termination, 2) has a fast comparison

in the search loop. This is because the part of ‘Otherwise’ will never be performed
at run-time.

But what is a way out for the case when there is proved an ‘expensive’ bound
like above, and is not even known of any better bound?

The following solution is sufficient. In Search-II, put for bound2 an unfeasible
number — such one that will never be reached in practice in the above loop
(I take this solution from the message by Ulf Norell).

In fact, this trick with unfeasible bound partly replaces the Markov’s principle
in constructive mathematics. This principle [2] allows a proof by contradiction for
a termination proof, and it cannot be implemented in Agda without using the
‘postulate’ construct.

3. Refuting the two prejudices

Prejudice 1:
“Proof by contradiction is not possible in constructive mathematics”.

In fact: it is possible — when the relation has a decision algorithm.
Example: in most domains in computer algebra the equality relation has a decision
algorithm _=?_. Respectively, a program of the kind

case x =? y of \ { (yes x≈y) → ...; (no x 6≈y) → ... }

actually applies the excluded third law to this relation.

Prejudice 2: “Programs in the verified programming tools (like Coq, Agda) do not
provide a proof itself, instead they provide an algorithm to build a proof witness
for each concrete data”.

I claim: they also provide a proof in its ordinary meaning
(this is so in Agda, and I expect, the same is with Coq).

Let us illustrate this with the example of proving the statement

for all n (n ≤ n).

for natural numbers. The relation _≤_ is defined on N so that a witness for it can be
built only with applying the two data constructors (axioms):
z≤n — “0 ≤ n for all n”, and s≤s — “if m ≤ n, then suc m ≤ suc n”.
(Syntax: z≤n, s≤s are function names, as they are written without blanks).



4 Sergei D. Meshveliani

For example: (s≤s (s≤s z≤n)) is a proof for 2 ≤ 5.
Consider the inductive proof for the goal statement. If n = 0, then 0 ≤ 0 is

proved by the law z≤n. For a nonzero, it is needed to prove suc n ≤ suc n. By
inductive supposition, there exists a proof p for n ≤ n. And the law s≤s applied
to p yields a proof for suc n ≤ suc n.

Write the corresponding proof in Agda:
theorem : ∀ n → n ≤ n

theorem 0 = z≤n
theorem (suc n) = s≤s (theorem n)

For each n : N the function theorem returns a value in the type n ≤ n, that is the
corresponding witness. The second pattern applies the function theorem recursively.
This provides a proof in the two meanings.
(1) At the run-time, (theorem n) yields a proof for n ≤ n for each concrete n.
(2) The very algorithm expression for theorem is a symbolic expression that presents
a general proof for the statement “for all n (n ≤ n)”.

The algorithm (program) theorem is a symbolic expression (term), its parts
depending on a variable n. This term is verified by the type checker statically —
before run-time. And this is the same as checking an ordinary inductive proof.
Reasoning by induction corresponds to setting a recursive call to the algorithm for
forming a witness.

We see that (2) provides a real generic proof for the statement, while (1)
provides a witness for each concrete n. Similar it is with all proofs.

References

[1] Per Martin-Löef, Intuitionistic Type Theory. Bibliopolis. ISBN 88-7088-105-9, 1984.

[2] A. A. Markov, On constructive mathematics, In Problems of the constructive di-
rection in mathematics. Part 2. Constructive mathematical analysis, Collection of
articles, Trudy Mat. Inst. Steklov., 67, Acad. Sci. USSR, Moscow–Leningrad, 1962,
8–14.

[3] S. D. Meshveliani, On dependent types and intuitionism in programming mathemat-
ics, (In Russian) In electronic journal Program systems: theory and applications,
2014, Vol. 5, No 3(21), pp. 27–50, available at
http://psta.psiras.ru/read/psta2014_3_27-50.pdf

[4] S. D. Meshveliani, Programming basic computer algebra in a language with dependent
types, In electronic journal Program systems: theory and applications, 2015, 6:4(27),
pp. 313–340. (In Russian), available at
http://psta.psiras.ru/read/psta2015_4_313-340.pdf

[5] U. Norell, J. Chapman, Dependently Typed Programming in Agda, available at
http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf

Sergei D. Meshveliani
Program Systems Institute of Russian Academy of sciences, Pereslavl-Zalessky, Russia
e-mail: mechvel@botik.ru


