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Abstract. The problem of multiply valued functions in computer algebra sy-
stems is reviewed. This paper combines the two usual approaches to under-
standing such functions. The first approach describes the multiple values as
branches in the complex plane. The second approach describes the multiple
values as properties of the Riemann surface of the function. In this paper, a
modified implementation in Maple allows us to work with these ideas more
efficiently.

1. Introduction

The manner in which computer-algebra systems handle multivalued functions,
specifically the elementary inverse functions, has been the subject of extensive
discussions over many years. See, for example, [2, 4]. The discussion has centred
on the best way to handle possible simplifications, such as

√
z2 = z ? arcsin(sin z) = z ? ln(ez) = z ? (1)

In the 1980s, errors resulting from the incorrect application of these transformati-
ons were common. Since then, systems have improved and now they usually avoid
simplification errors, although the price paid is often that no simplification is made
when it could be. For example, Maple 18 fails to simplify

√
1− z

√
1 + z −

√
1− z2 ,

even though it is zero for all z ∈ C, see [2]. Here a new way of looking at such
problems is presented.

The discussion of possible treatments has been made difficult by the many
different interpretations placed on the same symbols by different groups of mat-
hematicians. Sorting through these interpretations, and assessing which ones are
practical for computer algebra systems, has been an extended process. In this pa-
per, we shall not revisit in any detail the many past contributions to the discussion,
but summarize them and jump to the point of view taken here.
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1.1. A question of values
One question which has been discussed at length concerns the number of values
represented by function names. One influential point of view was expressed by
Carathéodory, in his highly regarded book [3]. Considering the logarithm function,
he addressed the equation

ln z1z2 = ln z1 + ln z2 , (2)

for complex z1, z2. He commented [3, pp. 259–260]:
The equation merely states that the sum of one of the (infinitely many)
logarithms of z1 and one of the (infinitely many) logarithms of z2 can be
found among the (infinitely many) logarithms of z1z2, and conversely
every logarithm of z1z2 can be represented as a sum of this kind (with
a suitable choice of ln z1 and ln z2).

In this statement, Carathéodory first sounds as though he thinks of ln z1 as a sym-
bol standing for a set of values, but then for the purposes of forming an equation
he prefers to select one value from the set. Whatever the exact mental image he
had, the one point that is clear is that ln z1 does not have a unique value, which is
in strong contrast to every computer system. Every computer system will accept
a specific value for z1 and return a unique ln z1.

The reference book edited by Abramowitz & Stegun [1, Chap 4] is another
authoritative source, as is its successor [9]. They both define, to take one exam-
ple, the solution of tan t = z to be t = Arctan z = arctan z + kπ. When listing
properties, they both give the equation

Arctan(z1) + Arctan(z2) = Arctan
z1 + z2
1− z1z2

. (3)

For z1 = z2 =
√
3, Maple and Mathematica simplify this identity to π/3 = −π/3.

Riemann surfaces give a very pictorial way of seeing multi-valuedness [10, 5],
but a question remains whether they can be used computationally [7]. Here we
shall continue an approach to Riemann surfaces described by [5] and in references
given therein.

2. A new treatment of inverse functions
The basis of the new implementation is notation first introduced in [6]. To the
standard function ln z, a subscript is added:

lnk z = ln z + 2πik .

Here the function ln z denotes the principal value of logarithm, which is the single-
valued function with imaginary part −π < = ln z ≤ π. This is the function cur-
rently implemented in Maple, Mathematica, Matlab and other systems. In con-
trast, lnk z denotes the kth branch of logarithm. With this notation, the statement
above of Carathéodory can be restated unambiguously as

∃k,m, n ∈ Z, such that lnk z1z2 = lnm z1 + lnn z2 .
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His “and conversely" statement is actually a stronger statement. He states

∀k ∈ Z,∃m,n ∈ Z, such that lnk z1z2 = lnm z1 + lnn z2 .

In the light of his converse statement, Carathéodory’s first statement could be
interpreted as meaning

∀m,n ∈ Z,∃k ∈ Z, such that lnm z1 + lnn z2 = lnk z1z2 .

This shows the greater conciseness of branch notation.

3. An example function
To save space, we consider only the inverse sine function. The principal branch of
the inverse sine function is denoted in Maple by arcsin. Using this, we define the
branched inverse sine by

invsin0 z = arcsin z , (4)

invsink z = (−1)k invsin0 z + kπ . (5)

The principal branch now has the equivalent representation invsin0 z = invsin z =
arcsin z. It has real part between −π/2 and π/2. Notice that the branches are
spaced a distance π apart in accordance with the antiperiod1 of sine, but the
repeating unit is of length 2π in accord with the period of sine.

The Maple code for the function is
invsin := proc (z::algebraic) local branch;

if nargs <> 1 then
error "Expecting 1 argument, got", nargs ;

elif type(procname, ’indexed’) then
branch := op(procname);
branch*Pi+(-1)^branch*arcsin(z);

else arcsin(z);
end if;

end proc;

4. Riemann surfaces
Many multivalued functions are the inverses of single-valued functions. This allows
the Riemann surface to be plotted easily. To plot the cube-root surface in Maple,
we issue the plot command, which uses the branch notation above for colouring.
plot3d([Re((u+I*v)^3),Im((u+I*v)^3), u], u = -1 .. 1, v = -1 .. 1,
colour = (2+k3(u+I*v))*(1/4), view = [-1 .. 1, -1 .. 1, -1 .. 1])

1An antiperiodic function is one for which ∃α such that f(z + α) = −f(z), and α is then the
antiperiod. This is a special case of a quasi-periodic function [8], for which ∃α, β such that
f(z + α) = βf(z).



4 David J. Jeffrey

References
[1] M. Abramowitz, I. J. Stegun. Handbook of Mathematical Functions. Dover, 1965.
[2] R. J. Bradford, R. M. Corless, J. H. Davenport, D. J. Jeffrey, S. M. Watt. Reasoning

about the elementary functions of complex analysis. Annals of Mathematics and
Artificial Intelligence, 36:303–318, 2002.

[3] C. Carathéodory. Theory of functions of a complex variable, 2nd. ed. Chelsea, New
York, 1958.

[4] R. M. Corless and D. J. Jeffrey. The unwinding number. Sigsam Bulletin, 30(2):28–
35, June 1996.

[5] R. M. Corless and D. J. Jeffrey. Elementary Riemann surfaces. Sigsam Bulletin,
32(1):11–17, March 1998.

[6] D. J. Jeffrey, D. E. G. Hare, and R. M. Corless. Unwinding the branches of the
Lambert W function. Mathematical Scientist, 21:1–7, 1996.

[7] D.J. Jeffrey and A.C. Norman. Not seeing the roots for the branches. SIGSAM
Bulletin, 38(3):57–66, 2004.

[8] Derek F. Lawden. Elliptic functions and applications. Springer, 1989.
[9] Daniel W. Lozier, Frank W. J. Olver, and Ronald F. Boisvert. NIST Handbook of

Mathematical Functions. Cambridge University Press, 2010.
[10] Michael Trott. Visualization of Riemann surfaces of algebraic functions.Mathematica

in Education and Research, 6:15–36, 1997.

David J. Jeffrey
Dept. of Applied Mathematics
The University of Western Ontario
London, Ontario, Canada
e-mail: djeffrey@uwo.ca


