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Abstract. Managing of cluster parallel computations for tree-like recursive
algebraic algorithms for the case of cluster with distributed memory is one of
the di�cult problems of computer algebra. The block-recursive algorithms of
matrix and polynomial multiplication, Strassen's and Karatsuba's algorithms,
matrix inversion and computation of the kernel of a matrix operator, LDU and
Bruhat factorization are examples of such algorithms. We suggest a scheme
with multidispatching for management of such parallel computing processes
and demonstrate the results of experiments at the JSC RAS cluster MVS-10P.

Introduction

The task of managing calculations on a cluster with distributed memory for sparse
matrix algorithms is today one of the most di�cult challenges [1]. This task can
not be solved independently of the algorithm itself, since it can not be solved in
an abstract setting. With any approach to such a task, it is necessary to somehow
�x the class of algorithms.

We consider the class of block-recursive matrix algorithms. The most fa-
mous of them are standard and Strassen's block matrix multiplication, Schur and
Strassen's block-matrix inversion [2].

For such algorithms we suggest a scheme with multidispatching management
of parallel computing processes. We demonstrate the results of experiments at
the cluster computer MVS-10P. These experiments show high e�ciency of this
conception of management.

Class of block-recursive matrix algorithms

Generalization of Strassen's algorithm for triangular factorization and matrix in-
version with permutations of rows and columns by J. Bunch and J. Hopkroft [3] is
not a block-recursive algorithm. Block-recursive algorithms were not so important
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as long as the calculations were performed on computers with shared memory.
Only in the nineties it became clear that block-recursive matrix algorithms are
required to operate with sparse super large matrices on a supercomputer.

The block recursive algorithm for the solution of systems of linear equations
and for adjoint matrix computation which is some generalisation of Schur inversion
in commutative domains was discraibed in [4] and [5]. See also at the book [6].
However, in all algorithms, except matrix multiplication algorithms, there is a very
strong restriction that is superimposed on the matrix. The leading minors of the
matrix, which are on the main diagonal, should not be zero.

This restriction was removed later in the papers [7] - [9]. The algorithm
that computes the adjoint matrix, the echelon form, and the kernel of the matrix
operator for the commutative domains was proposed in [7]. The block-recursive
algorithm for the Bruhat decomposition and the LDU decomposition for the matrix
over the �eld was obtained in [8], and these algorithms generaized for the matrices
over commutative domains was obtained in [9] and [10].

1. Other bene�ts and application

Control systems.

In 1967 Howard H. Rosenbrock introduced a useful state-space representation
and transfer function matrix form for control systems, which is known as the
Rosenbrock System Matrix [11]. Since that time, the properties of the matrix of
polynomials being intensively studied in the literature of linear control systems.

Groebner basis.

Another important application is the calculation of Gröbner bases. A matrix
composed of Buchberger S-polynomials is a strongly sparse matrix. Reduction of
the polynomial system is performed when calculating the echelon and diagonal
forms of this matrix. The algorithm F4 was the �rst such matrix algorithm.

Solving PDE's for particle interaction.

The conservation of the matrix sparseness during the Bruhat decomposition
was �rst investigated in [12]. One of the important class of sparse matrix is called
quasiseparable. Any submatrix of quasiseparable matrix entirely below or above
the main diagonal has small rank. These quasiseparable matrices arise naturally
in solving PDE's for particle interaction with the Fast Multi-pole Method (FMM).
The e�ciency of application of the block-recursive algorithm of the Bruhat de-
composition to the quasiseparable matrices is studied in the article [13].

2. Calculation managing and experiments

The block-recursive matrix algorithms for sparse matrix require a special ap-
proachs to managing parallel programs. One approach to the cluster computations
management is a scheme with one dispatcher (or one master).
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We consider another scheme of cluster menagement. It is a scheme with mul-
tidispatching, when each involved computing module has its own dispatch thread
and several processing threads[15, 14].

Let us denote by Ni the number of cluster cores and by Ti the computational
time in the i-th experiment. For the theoretical best case we'd like to have con-
stant product: ∀i : TiNi = const. So to demonstrate the e�ciency of parallel
computational process we have to know the value Ei = 100% TiNi/(T1N1). This
is the e�ciency which was demonstrated in the i-th experiment.

matrix size is 8192 matrix size is 16384

Figure 1. The e�ciency of the calculation of Schur matrix in-
version as a function of the number of cores.
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)
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For standard matrix multiplication we call it Schur method. And we call it Schur-
Strassen method when we used here Strassen's matrix multiplication.

The results of experiments with Schur matrix inversion algorithm are shown
in �g. 1. The results for computation of kernel of the matrix operator and adjoint
matrix [7] are shown in �g. 2. We use matrices over �nite numerical �elds in both
cases.

The computational experiments was done in Joint Supercomputer Center of
the Russian Academy of Sciences (http://www.jscc.ru/scomputers.html) at the
cluster mvs10p: Intel Xeon E5-2690, 64G RAM Intel(R) MPI Library for Linux*
OS, Version 4.1.0.
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matrix size is 8192 matrix size is 12288

Figure 2. The e�ciency of the calculation of kernel and adjoint
matrix as a function of the number of cores.

In experiments we made calculations for identical matrices, using a di�erent
number of cluster's nodes.

For the Schur inversin algorithm the minimum number of cores was 8 (1
node), and the maximum number of cores was 200 (25 nodes). For the matrix
of size 8192x8192 the number of cores increased 25 times and as a result the
calculation time changed 15 times: from 749 sec. to 51 sec. For the matrix of size
16384x16384 number of cores increased 25 times and the calculation time changed
17 times: from 1159 sec. to 69 sec.

For our adjoint and kernell computation algorithm the minimum number of
cores was 8 (1 node), and the maximum number of cores was 400 (50 nodes). For
the matrix of size 8192x8192 the number of cores in experiment increased 50 times
and as a result the calculation time changed 22 times: from 3969 sec. to 181 sec.
For the matrix of size 12288x12288 the number of cores increased 50 times and
the calculation time changed 28 times: from 15249 sec. to 548 sec.

Static Control of a Parallel Computing Process

One of the most popular approaches in computer algebra is the method of homo-
morphic images, based on the Chinese remainder theorem. It allows solving the
problem simultaneously in many factor rings and using these solutions to obtain a
solution of the original problem. For such a process of parallelization, it is su�cient
to use static control of calculations on a cluster.
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If the elements mi, i = 1, .., k, of the commutative ring R are relatively prime,
m1..mk = µ, ri = x mod mi, i = 1, .., k, then to �nd the x mod µ the well-known
Newton scheme is usually used.

Below we give Newton scheme for the particular case where the main ring R
is a ring of integer numbers. In contrast to the standard scheme of calculations,
we only change the order of actions, but we get fewer operations.

Let nij be inverse element of mi in Z/mjZ, i.e. nijmi = 1 mod mj . Denote:

c1 = r1, c̄1 = c1 mod m2, ν1 = n1,2 mod m2,

c2 = c1 +m1(ν1(r2 − c̄1) mod m2), c̄2 = c2 mod m3, ν2 = n1,3n2,3 mod m3,

c3 = c2 +m1m2(ν2(r3 − c̄2)mod m3), c̄3 = c3 mod m4, ν3 = n1,4n2,4n3,4 mod m4,

...

ck = ck−1 +m1...mk−1(νk−1(rk − c̄k−1) mod mk), c̄k = ck mod mk+1,

νk = n1,k+1n2,k+1..nk,k+1 mod mk+1,

...

cn = cn−1 +m1...mn−1(νn−1(rn − c̄n−1) mod mn).

It is easy to verify by induction that the following inequalities hold

0 ≤ ck < m1..mk, k = 1, 2, ..n.

So the number cn is not required to be modulo µ, since it is already in the
required interval.

Of course, the same scheme can be successfully applied in the ring of poly-
nomials and in all cases when the Chinese remainder theorem holds.

Example:

mi = {31, 52, 73}, µ = 105, x = 73,

ri = {11, 32, 33}, n1,2 = 2, n1,3 = 5, n2,3 = 3, νi = {21, 12},

c1 = 1, c̄1 = 1,

c2 = 1 + 3(2(3− 1) mod 5) = 13, c̄2 = 6,

c3 = 13 + 3 · 5(1(3− 6) mod 7) = 73.

References

[1] Dongarra J. With Extrim Scale Computing the Rules Have Changed. In Mathemat-
ical Software. ICMS 2016, 5th International Congress, Proceedings (G.-M. Greuel,
T. Koch, P. Paule, A. Sommese, eds.), Springer, LNCS, volume 9725, pp. 3-8, 2016.

[2] Strassen V. Gaussian Elimination is not optimal. Numerische Mathematik. V. 13,
Issue 4, 354�356 (1969)

[3] Bunch J., Hopkroft J. Triangular factorization and inversion by fast matrix multi-
plication. Mat. Comp. V. 28, 231-236 (1974)



6 Evgeny Ilchenko and Gennadi Malaschonok

[4] Malaschonok G. Recursive Method for the Solution of Systems of Linear Equations.
Computational Mathematics. A. Sydow Ed, Proceedings of the 15th IMACS World
Congress, Vol. I, Berlin, August 1997), Wissenschaft & Technik Verlag, Berlin 1997,
475-480.

[5] Malaschonok G. E�ective Matrix Methods in Commutative Domains, Formal Power
Series and Algebraic Combinatorics, Springer, Berlin, 2000, 506-517.

[6] Malaschonok G. Matrix computational methods in commutative rings. Tambov,
TSU, 2002, 213 p.

[7] Malaschonok G. On computation of kernel of operator acting in a module // Vestnik
Tambovskogo universiteta. Ser. Estestvennye i tekhnicheskie nauki [Tambov Univer-
sity Reports. Series: Natural and Technical Sciences], vol. 13, issue 1, 2008. 129-131.

[8] Malaschonok G. Fast Generalized Bruhat Decomposition. Computer Algebra in Sci-
enti�c Computing, LNCS 6244, Springer, Berlin 2010. 194-202. DOI 10.1007/978-3-
642-15274-0_16. arxiv:1702.07242

[9] Malaschonok G. Generalized Bruhat decomposition in commutative domains /in
book: Computer Algebra in Scienti�c Computing. CASC'2013. LNCS 8136, Springer,
Heidelberg, 2013, 231-242. DOI 10.1007/978-3-319-02297-0_20. arxiv:1702.07248

[10] Malaschonok G., Scherbinin A. Triangular Decomposition of Matrices in a Domain.
Computer Algebra in Scienti�c Computing. LNCS 9301, Springer, Switzerland, 2015,
290-304. DOI 10.1007/978-3-319-24021-3_22. arxiv:1702.07243

[11] Rosenbrock, H.H. Transformation of linear constant system equations. Proc. I.E.E.
V.114, 541�544. (1967).

[12] Kolotilina L., and A. Yemin A. Bruhat decomposition and solution of linear algebraic
systems with sparse matrices. Sov.J.Numer.Anal. and Math.Model. v.2, 421�436
(1987).

[13] Pernet C., Storjohann A. Time and space e�cient generators for quasiseparable
matrices. arXiv:1701.00396 (2 Jan 2017) 29 p.

[14] Ilchenko E.A. An algorithm for the decentralized control of parallel computing pro-
cess // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tekhnicheskie nauki
[Tambov University Reports. Series: Natural and Technical Sciences], 2013, vol. 18,
issue 4, 1198-1206.

[15] Ilchenko E.A. About e�ective methods parallelizing block recursive algorithms //
Vestnik Tambovskogo universiteta. Ser. Estestvennye i tekhnicheskie nauki [Tambov
University Reports. Series: Natural and Technical Sciences], 2015, vol. 20, issue 5,
1173-1186.

Evgeny Ilchenko
Tambov State University named after G.R.Derzhavin
Tambov, Russia
e-mail: ilchenkoea@gmail.com

Gennadi Malaschonok
Tambov State University named after G.R.Derzhavin
Tambov, Russia
e-mail: malaschonok@gmail.com


