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Abstract. The trajectory of a quantum system is a sequence of unitary evo-
lutions of vectors in a Hilbert space, interspersed with observations — projec-
tions of the vectors in some subspaces, that are specified by measuring devices.
Quantum-mechanical description can be made constructive, if we replace the
general group of unitary transformations of the Hilbert space by unitary rep-
resentations of finite groups. It is known that any linear representation of a
finite group can be realized as a subrepresentation of some permutation rep-
resentation. Thus, quantum mechanical problems can be formulated in terms
of groups of permutations. Such a constructive approach allows us to clarify
the meaning of a number of physical concepts.

1. Quantum Mechanics. Briefly, the formalism of quantum mechanics is reduced
to the following. A pure quantum state is a ray in a Hilbert space H over C, i.e. an
equivalence class of non-zero vectors in H: |ψ〉 ∼ a |ψ〉, a ∈ C. The normalization
〈ψ |ψ〉 = 1 reduces the equivalence: |ψ〉 ∼ eiα |ψ〉 , α ∈ R. The phase factor
eiα can be eliminated by replacing the normalized vector |ψ〉 with the rank one
projector Πψ = |ψ〉〈ψ|. A weighted mixture of pure quantum states is called a
mixed quantum state. Any quantum state can be represented by a density matrix
ρ with characteristic properties: ρ = ρ†, ρ ≥ 0, trρ = 1. In particular, for a pure
state |ψ〉 the density matrix is the projector |ψ〉〈ψ|. The eigenvalues p1, p2, . . .
of a density matrix form a probability distribution in an ensemble of pure states.
The Hilbert space of a composite system is the tensor product of Hilbert spaces
for the subsystems: HXY = HX

⊗HY . Any mixed state in a Hilbert space H can
be obtained by taking partial trace of a pure state in a “larger” Hilbert space that
contains H as a tensor factor (this is called “purification”). Observation is detection
of the state of a quantum system in one of the mutually orthogonal subspaces that
form a partition (defined by an observational setup) of the Hilbert space. The result
of quantum observation is random and its statistics is described by a probability
measure defined on the subspaces. Gleason’s theorem states that (for dimH > 2)
any suitable measure has the form µρ (S) = tr (ρΠS), where ρ is an arbitrary
density matrix, ΠS is the orthogonal projection in the subspace S ≤ H. In the
case of pure state, ρ = |ϕ〉〈ϕ|, and one-dimensional subspace S = span {|ψ〉},
we have the usual Born rule: tr (ρΠS) ≡ |〈ϕ |ψ〉|2. Measurement is a particular
case of observation when the orthogonal partition of a Hilbert space is formed
by the eigenspaces of an observable (an arbitrary Hermitian operator) A. The
eigenvalues of A are considered as measured values. The expectation value of A in
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the state ρ is defined as 〈A〉ρ = tr (ρA). The time evolution of a quantum system
between observations is described by a unitary transformation: |ψt′〉 = Ut′t |ψt〉,
or ρt′ = Ut′tρtU

†
t′t.

2. Constructive Modification of Quantum Formalism. To build constructive mod-
els, we need to remove infinities from the formalism. Formally, one can prove that
the unitary group U(n) ∼= Aut (Hn), which has the cardinality of continuum, is em-
pirically equivalent to a finite group G. This means that for any particular problem
it is always possible to pick a finite group G such that its unitary representation
can replace U(n) without losing the accuracy of describing the empirical data. In
essence, it seems more natural to assume that at the fundamental level, it is the
finite groups that act, and the continuous unitary groups are only continuum ap-
proximations of their unitary representations.
The advantages of finite groups are:
• any finite group is a subgroup of a symmetric group,
• any linear representation of a finite group is unitary and is a subrepresentation

of some permutation representation,
• from an empirical point of view, any continuous group can be approximated

by a finite one, but not vice versa.
Natural numbers N = {0, 1, . . .} and roots of unity r | rk = 1 are sufficient to
represent all numbers that are significant in the quantum formalism. Let N [rk]
denote the extension of the semiring N by a kth primitive root of unity. N [rk] is a
ring for k ≥ 2. In particular, this construction gives a way to introduce negative
numbers: Z = N [r2]. The fraction field of the ring N [rk] is the kth cyclotomic field
Q(rk), which is a dense subfield of C for k ≥ 3.
Let G act by permutations on a finite domain Ω, |Ω| = N. This action induces
a permutation representation of G on the module NN over the semiring N. Any
linear representation of G can be realized over a cyclotomic field Q (rk), where k
is some divisor of the exponent of G. Let us extend the module NN to the Hilbert
space HN by extending N to Q (rk). Any constructive representation of G can be
obtained by projecting the permutation representation of G on the module NN (for
some sufficiently large N) in an invariant subspace of the Hilbert space HN.
3. Modeling of Quantum Evolution. The time evolution of a quantum system is a
sequence of observations with unitary transitions between them. The role of ob-
servations is most impressively manifested in the quantum Zeno effect. Since the
observation of even a pure state leads to a mixed state, it is natural to describe
evolution in terms of the density matrix. Suppose that the fundamental (“Planck”)
time is a sequence of integers: T = {. . . , 0, 1, 2, . . .}. We define “empirical time”
as a sequence of “instants of observations”: t0, t1, . . . , ti−1, ti, . . .. The simplest as-
sumption is that the instants of observations are elements of the fundamental time:
ti ∈ T . More realistic model of the empirical time would be a distribution around
ti, e.g. the binomial distribution

Kσ (τ−ti) =
(2σ)!

4σ(σ−ti+τ)! (σ+ti−τ)!
, ti − σ ≤ τ ≤ ti + σ. (1)
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At present, the smallest time uncertainty, i.e. the analog of σ, in physical experi-
ments is about 1026 Planck time units. Let ρi denote the state of the system after
the ith observation. According to the standard quantum mechanics, the state be-
fore the ith observation takes the form ρ′i = Uρi−1U†, where U = e−iH(ti−ti−1)

is a single unitary evolution with a given Hamiltonian H. If ρi−1 is pure, then ρ′i
is also pure. Hamiltonians are usually derived from the principle of least action.
Motivated by the fact that any extremal principle involves a selection of dom-
inant elements among many candidates, we propose the following modification:
ρ′i =

∑M
k=1 wikUkρi−1U

†
k , where U1, . . . , UM are elements of a unitary represen-

tation of a finite group of size M, wik are (normalized:
∑M
k=1 wik = 1) weights

of the group elements at the transition ti−1 → ti. A trivial choice of weights
reproduces the standard scheme, but in general ρ′i is a mixed state. The single-
step and N -step transition probabilities are Pi =

∑M
k=1 wik tr

(
Ukρi−1U

†
kρi
)
and

P0→N =
∏N
i=1 Pi, respectively. The single-step transition entropy ∆Si= − logPi

is a discrete analog of Lagrangian L, and the corresponding entropy of trajectory
S0→N =

∑N
i=1 ∆Si is an analog of action S =

∫
Ldt.

4. The Principle of Least Action as Continuum Approximation. To obtain the
continuum limit of the above-described quantum evolution model, we proceed as
follows. Replacing the finite group by a Lie group, we introduce the Lie alge-
bra approximation in the vicinity of the identity element. For a matrix of uni-
tary representation we have U ≈ 1+iA, where A is a Hermitian matrix. We use
also the linear approximation for the differences of variables by introducing the
time derivatives: Xi − Xi−1 ≈ Ẋi (ti − ti−1). Discrete sequences are replaced by
continuous functions. Note that the case of general mixed states does not allow
reasonable continuous approximations: it is natural to assume that the probabil-
ity of a transition between close density matrices should tend to unity, however
tr
(
ρ2
)

= 1 implies that ρ is a projector. Thus, we shall assume here the case
of pure states ψ. All this, together with some standard approximations, leads

to the following expression for the Lagrangian L =
〈
ψ
∣∣∣ Ȧ2

∣∣∣ψ〉 − 〈ψ ∣∣∣ Ȧ∣∣∣ψ〉2
− i

(〈
ψ̇
∣∣∣ Ȧ∣∣∣ψ〉− 〈ψ ∣∣∣ Ȧ∣∣∣ ψ̇〉+ 2

〈
ψ
∣∣∣ Ȧ∣∣∣ψ〉〈ψ | ψ̇〉)− 〈ψ | ψ̇〉2.

5. Searching Dominant Unitary Evolutions in Natural and Standard Representa-
tions of Symmetric Group. The usual natural representation of SN in the Hilbert
space HN can be obtained from the permutations of coordinates in the mod-
ule H = NN by extending the semiring N to the field C. The natural repre-
sentation decomposes into the one-dimensional trivial and (N− 1)-dimensional
standard irreducible representations. In fact, any representation of SN can be re-
alized over Q (and over Z). The inner product in the module H is defined as
〈m |n〉 =

∑N
k=1mknk for m,n ∈ H. Let |x〉 denote the normalized natural vec-

tor: |x〉 = |n〉 /
√
〈n |n〉. For the natural pure states we have the usual Born rule

Pnat (x, y) = 〈x |y〉2. The space of the standard representation is the (N− 1)-
dimensional ‘standard’ subspace in HN defined by the condition x1 + · · ·+xN = 0.
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Any vector of the standard subspace can be expressed via the projection of some
normalized natural vector. The Born probability in the standard subspace in terms
of the normalized natural vectors takes the form

Pstd (x, y) =
(N 〈x |y〉 − ab)2

(N− a2) (N− b2)
, where a =

N∑
k=1

xk and b =

N∑
k=1

yk.

Consider the evolution of the initial vector |x〉, the result of which is measured
by the vector |y〉. The dominant evolutions, i.e. those that provide maximum
interaction with the observation device, are of the most interest, since they mainly
determine the observed behavior of a quantum system. In the case of the natural
and standard representations of the group SN, all the dominant evolutions for any
given pair of vectors |x〉 and |y〉 can be found by simple algorithms. The two
figures below show the dominant evolutions for four randomly generated pairs of
vectors |x〉 and |y〉 for the cases N = 100 and N = 2000. The graphs of time
evolution of Born’s probabilities are smoothed by the binomial kernel (1) with
σ = 7. It is seen that with increasing N, the relative weight of dominant evolutions
rapidly increases.

0 20 40 60 80 100 120 140 160

time

0.00

0.05

0.10

0.15

0.20

B
o
rn

 p
ro

b
a
b
ili

ty

S100

0 500 1000 1500 2000 2500 3000

time

0.00

0.05

0.10

0.15

0.20

B
o
rn

 p
ro

b
a
b
ili

ty

S2000

Vladimir V. Kornyak
Laboratory of Information Technologies
Joint Institute for Nuclear Research
Dubna, Russia
e-mail: vkornyak@gmail.com


