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Abstract. The article focuses on methods to confirm the smoothness of some
cubic hypersurfaces that are closely related to the set partition problem.

Let us recall the set partition problem [1]. Given a multiset of positive integers
{α0, . . . , αn}. Can it be partitioned into two subsets with equal sums of elements?
Points with coordinates ±1 are called (−1, 1)-points. The problem is to recognize
whether a (−1, 1)-point belongs to the hyperplane given by the linear equation
α0 + α1x1 + · · · + αnxn = 0. It is hard to find a (−1, 1)-point belonging to the
hyperplane in high dimensions [2]. On the other hand, one can find (−1, 1)-points
belonging to the hyperplane given by a linear function with integer coefficients
near zero, using dynamic programming [1].

Let us consider an affine hypersurface F that is the vanishing locus of a
square-free polynomial f . A straight line passing through the selected point U ∈ F
is the set of points with coordinates ((x1 − u1)t+ u1, . . . , (xn − un)t+ un), where
(u1, . . . , un) are coordinates at U , and t is a parameter. Let us denote by r(t) a
univariate polynomial that is the restriction of the polynomial f to the line, and
by B[f, U ] the discriminant of r(t)/t. Since r(0) = 0, r(t)/t is a polynomial of
degree at most d−1, where d = deg f . If deg r(t) < d−1, then we use the formula
for degree d− 1 by means of substitution the zero as the leading coefficient. If the
point U is smooth, then B[f, U ](x1, . . . , xn) defines a cone.

Let us denote by K a finite extension of the field of rational numbers Q. Any
smooth cubic curve is not unirational. In accordance with [3], for each cubic surface
as well as high dimensional hypersurface X defined over K, if X is irreducible, X
is not a cone, and X contains a K-point, then X is unirational over K. That is, we
have not only a lot of K-points but also a rational map from the set of Q-points
of the affine space to the set of K-points of X . The explicit parameterizations of
the Clebsch diagonal surface as well as the Fermat cubic surface are exemplified
in [4]. Both surfaces are rational over Q.

Let us denote f = α0+α1x
3
1+· · ·+αnx

3
n and h = α0+α1x1+· · ·+αnxn, where

all coefficients α0,. . . , αn are nonzero. F denotes the affine cubic hypersurface given
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by the equation f = 0 as well as H denotes the hyperplane given by h = 0. The
following theorem improves the result from [5] in case of cubic hypersurfaces.

Theorem 1. Given a multiset of positive integers {α0, . . . , αn}. There exists a one-
to-one correspondence between singular points of the hyperplane section F ∩H and
(−1, 1)-points belonging to the hyperplane H.

Proof. If both polynomials f and h vanish simultaneously at a (−1, 1)-point, then
the hyperplane H is tangent to the hypersurface F at this point. Thus, the hy-
perplane section is singular. Contrariwise, at a singular point of the section, the
hyperplane H coincides with the tangent hyperplane to the hypersurface F . Since
all the coefficients αk are nonzero, both gradients ∇f and ∇h can be collinear
only at the points whose coordinates satisfy the system of the equations x2k = x2j
for all indices k and j. All the points are (−1, 1)-points. �

The polynomial B[f, U ] is equal to the discriminant of a univariate polyno-
mial at2 + bt + c. That is, B[f, U ] = b2 − 4ac, where the coefficients are sums of
univariate polynomials a = a1(x1) + · · · + an(xn), b = b1(x1) + · · · + bn(xn), and
c = c0 + c1x1 + · · ·+ cnxn. Each monomial from B[f, U ](x1, . . . , xn) is dependent
on at most two variables.

Let us consider the factor ring K[x1, . . . , xn]/〈x21−1, . . . , x2n−1〉. It is referred
to as the set of multilinear polynomials. In this way, we have a surjective map ϕ
from the set of all polynomials onto the set of multilinear polynomials.

Let us denote by M [f, U ](x1, . . . , xn−1) a multilinear polynomial that is
an image of the restriction to the hyperplane H of the multilinear polynomial
ϕ(B[f, U ]). The restriction to the hyperplane H means that we substitute xn =
−(α0 +α1x1 + · · ·+αn−1xn−1)/αn. Let us denote by L a linear space spanned by
all multilinear polynomials M [f, U ](x1, . . . , xn−1), where U ∈ F ∩H.

A polynomial vanishes at a (−1, 1)-point if and only if its multilinear image
vanishes at this point. Thus, if the hyperplane H contains a (−1, 1)-point, then
all multilinear polynomials from L vanish at the point. Contrariwise, if a nonzero
constant belongs to the linear space L, then H does not contain any (−1, 1)-point.
In the case, F ∩H is smooth.

In case n = 2, let us consider values α0 = 1, α1 = 3, and α2 = 2. The
intersection F ∩ H consist of two points U(−1, 1) and V ( 15 ,−

4
5 ). The multilinear

polynomial ϕ(B[f, U ]) = −72x2x1 − 48x2 − 144x1 − 168. The substitution x2 =
− 3x1+1

2 yields a univariate polynomial 108x21 − 36x1 − 144. Its multilinear image
M [f, U ] = −36x1 − 36. At the second point V the multilinear polynomial

M [f, V ] =
26172

3125
x1 +

428292

15625
.

Two polynomials M [f, U ] and M [f, V ] together span the whole linear space of
univariate linear polynomials. The same holds for almost all values α1 and α2

because dimL is a lower semi-continuous function.
Contrariwise, if n = 2 and α0 = α1 = α2 = 1, then dimL = 1. The inter-

section F ∩ H consist of two points U(0,−1) and V (−1, 0). The third point does
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not belong to the affine plane. So, B[f, U ] = −12x1x2 − 24x2 − 12x1 − 24; the
multilinear polynomial M [f, U ] = 24x1 + 12. On the other hand, at the point V
the polynomial B[f, V ] = −12x1x2− 12x2− 24x1− 24; the multilinear polynomial
M [f, V ] vanishes identically. Thus, the linear space L is a proper subspace in the
two-dimensional space of univariate linear polynomials.

If n = 4 and α0 = α1 = α2 = α3 = α4, then dimL = 1. The space L is
spanned by one polynomial 2(x1x2 + x1x3 + x2x3 + x1 + x2 + x3) + 3. In the case,
the intersection F ∩H coincides with the Clebsch diagonal surface.

On the other hand, if n = 4, α0 = α1 = α2 = α3 = 1, and a large integer
α4 � 1, then dimL ≥ 5. At the limit αn → ∞ the intersection F ∩ H converges
to the Fermat surface inside the coordinate hyperplane x4 = 0. The corresponding
linear space contains five linearly independent polynomials. Thus, the same holds
true for all sufficiently large integers α4.

The examples have been computed by means of the service MathPartner [6].
Let us define

λ(n) =
n(n+ 1)

2
+ 1

that is the upper bound on dimL. In case α0 = α1, the section F ∩ H contains
the point (−1, 0, . . . , 0). Thus, for all n ≥ 4, if F ∩ H is not a cone, then there
exists a rational parametrization η : Qn−2 99K F ∩ H defined over Q, cf. [3]. Let
the point (−1, 0, . . . , 0) be the image of the locus of indeterminacy; η can be found
in probabilistic polynomial time.

If the section F ∩ H contains a point over the field K, then there exists a
rational parametrization η : Kn−2 99K F∩H defined over K. Let the initial K-point
be the image of the locus of indeterminacy.

Theorem 2. Given a multiset of positive integers α0,. . . , αn, where n ≥ 4 and
F ∩ H is not a cone, and a real ε > 0. Let us consider the multilinear polyno-
mials M [f, η(P (k))] for random points P (k), where the index k runs the segment
1 ≤ k ≤ λ(n), and all coordinates of the points P (k) are independent and uni-
formly distributed on the set of integers from one to d2poly(n)/εe. The probability
of spanning the whole linear space L is at least 1− ε.

Proof. It is based on the Schwartz–Zippel lemma [7]. �

Thus, in case n ≥ 4 and F ∩ H is not a cone, a basis of the linear space
L can be computed in probabilistic polynomial time. In this way, the algorithm
tries to find a rational parametrization η : Kn−2 99K F ∩ H; if it failed because
F ∩ H is a cone, then there exists a singular point. To prove the instance of the
set partition problem has no solution, it is sufficient to check whether a nonzero
constant belongs to the linear space L. Of course, the condition is not necessary.
On the other hand, if the linear space L contains a linear polynomial, one can
reduce the dimension of the initial task.
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