Diagonal complexes

Joseph Gordon and Gaiane Panina

Assume that $n>2$ is fixed. We say that two diagonals in a convex n-gon are non-intersecting if they intersect only at their endpoints (or do not intersect at all). John Milnor showed that the poset of all collections of pairwise non-intersecting diagonals in the n-gon (ordered by reverse inclusion) is isomorphic to the face poset of some convex ($n-3$)-dimensional polytope $A s_{n}$ called associahedron.

Instead of a polygon let us take an arbitrary (possibly bordered) orientable surface with a number of marked points (=vertices) lying not necessarily on the boundary. Generalizing a construction of J.L. Harer, we introduce and study similar diagonal complexes \mathcal{C} and \mathcal{B}. Investigation of some natural forgetful maps combined with length assignment proves homotopy equivalence for some of the complexes, for the space of metric ribbon graphs $R G_{g, n}^{m e t}$, for the tautological S^{1} bundles L_{i}, and for a more sophisticated bundle whose fibers are homeomorphic to some surgery of the surface F. The latter is shown to incorporate all the tautological S^{1}-bundles.

Acknowledgement

This research is supported by the Russian Science Foundation under grant 16-1110039.

Joseph Gordon
Mathematics and Mechanics Faculty, St. Petersburg State University
e-mail: joseph-gordon@yandex.ru
Gaiane Panina
Mathematics and Mechanics Faculty, St. Petersburg State University, St. Petersburg Department of Steklov Institute of Mathematics
e-mail: gaiane-panina@rambler.ru

