On Matveev's question about virtual 3-manifolds

E. A. Fominykh, A. V. Malyutin, and A. Yu. Vesnin

Abstract. S. V. Matveev introduced the concept of virtual 3-manifolds and posed a problem, whether the natural map from the set of nondegenerate virtual 3-manifolds to the set of 3-manifolds with RP^2 -singularities is injective. We show that this map is not injective and present an infinite family of virtual 3-manifolds corresponding to the same 3-manifold with RP^2 -singularities.

Matveev's virtual 3-manifolds can be naturally defined either in terms of *spines* or in the 'dual' language of singular triangulations. Contrary to the original definition via spines, we start with triangulations.

Face identification schemes. Let n be a positive integer, let $\mathcal{D} = \{\Delta_1, \ldots, \Delta_n\}$ be a set of n disjoint tetrahedra, and let $\Phi = (\phi_1, \ldots, \phi_{2n})$ be a collection of 2n affine homeomorphisms between the facets (i. e., triangular faces) of tetrahedra in \mathcal{D} such that each facet has a unique counterpart. Following [Mat03, p. 11], we refer to the pair (\mathcal{D}, Φ) as to a *face identification scheme* (a *scheme*). The *quotient space* $Q := Q(\mathcal{D}, \Phi)$ of the scheme (\mathcal{D}, Φ) is defined as the space obtained from \mathcal{D} by identification of faces via the homeomorphisms in Φ . For any scheme, Q is either a genuine or a singular 3-manifold (see [Sei33] or [Mat03, Proposition 1.1.23]). All singular points of Q correspond either to vertices or to barycenters of edges of the tetrahedra in \mathcal{D} . The latter happens if the quotient map folds an edge so that symmetric points (with respect to the barycenter of the edge) have the same image. If a singularity point x in Q corresponds to the barycenter of an edge, then the link of x is himeomorphic to the *projective plane* RP^2 , i. e., x is an RP^2 -singularity.

Pseudo-Pachner move. In Euclidean three-space, let P be the convex hull of five points that are in general position. Assume that P is not a tetrahedron. Then Pis the union of two geometric tetrahedra (Δ_1 and Δ_2 , say) and at the same time P is the union of three geometric tetrahedra with disjoint interiors (Δ_3 , Δ_4 , and Δ_5 , say). Let

 $\tau = \partial \Delta_1 \cup \partial \Delta_2$ and $\tau' = \partial \Delta_3 \cup \partial \Delta_4 \cup \partial \Delta_5$.

Supported by RFBR grant 16-01-00609.

If $Q := Q(\mathcal{D}, \Phi)$ is the quotient space of the scheme (\mathcal{D}, Φ) , we denote by $\sigma(Q)$ the image in Q of boundaries of tetrahedra in \mathcal{D} (2-skeleton of (\mathcal{D}, Φ)).

We say that two schemes (\mathcal{D}, Φ) and (\mathcal{D}', Φ') are related by a pseudo-Pachner move if there exists a homeomorphism $h: Q \to Q'$ between the quotient spaces $Q := Q(\mathcal{D}, \Phi)$ and $Q' := Q(\mathcal{D}', \Phi')$ and a map $f: P \to Q'$ such that

– the restriction of f to the interior of P is an embedding;

 $-h(\sigma(Q)) \cap f(P) = f(\tau) \text{ and } \sigma(Q') \cap f(P) = f(\tau');$

 $-h(\sigma(Q)) \setminus f(P) = \sigma(Q') \setminus f(P)$, that is, $h(\sigma(Q))$ and $\sigma(Q')$ do coincide outside f(P).

Definition. Virtual 3-manifolds. We say that two face identification schemes are *equivalent* if they are related by a chain of pseudo-Pachner moves. A *virtual 3-manifold* is an equivalence class of schemes. We say that a virtual 3-manifold is *degenerate* if it corresponds to a scheme with precisely one tetrahedron.

Truncated quotient spaces as underlying spaces of virtual 3-manifolds. The truncated quotient space $Q_t := Q_t(\mathcal{D}, \Phi)$ of the scheme (\mathcal{D}, Φ) is defined as the space obtained from the quotient space $Q := Q(\mathcal{D}, \Phi)$ by deleting small open proper neighborhoods of points in Q that are images of vertices of the tetrahedra in \mathcal{D} . Truncated quotient spaces of equivalent schemes are obviously homeomorphic. By the underlying space $Q_t(V)$ of a virtual 3-manifold V we will mean the truncated quotient space of schemes in V. Thus, the underlying space of a virtual 3-manifold is a 3-manifold with RP^2 -singularities.¹ The following facts follow from key results of the special spine theory (see [Mat03, Mat09]).

Corollary 1. (1) Each compact connected 3-manifold M with RP^2 -singularities and nonempty boundary is the underlying space of a virtual 3-manifold.

(2) If M is, moreover, genuine, then it is the underlying space of a unique nondegenerate virtual 3-manifold.

Problem. The following natural question arises (see [Mat09]). Do the second statements of Corollary 1 holds for 3-manifolds with RP^2 -singularities? That is, are there distinct nondegenerate virtual 3-manifolds with the same connected underlying space?

We present the following theorem that answers the question above.

Theorem 1. The cone $C(RP^2) = (RP^2 \times [0,1])/(RP^2 \times \{0\})$ over the projective plane RP^2 is the underlying space for an infinite number of pairwise distinct virtual 3-manifolds.

In order to explain the idea of the proof of Theorem 1, we introduce the concepts of 3-manifolds with traced RP^2 -singularities.

¹A compact three-dimensional polyhedron W is called a 3-manifold with RP^2 -singularities if the link of any point of W is either a 2-sphere, or a 2-disc, or RP^2 .

3-manifolds with traced RP^2 -singularities. A 3-manifold with traced RP^2 -singularities is a pair (W, \mathcal{I}) , where W is a 3-manifold with RP^2 -singularities and \mathcal{I} is a subpolyhedron of W with the following properties:

 $-\mathcal{I}$ is a disjoint union of arcs (these arcs are called *traces*),

- the number of components in \mathcal{I} equals the number of singular points in W, - each component of \mathcal{I} emanates from the boundary of W and ends at a

singularity point of W.

We describe two interpretations for 3-manifolds with traced RP^2 -singularities.

3-manifolds with Möbius singularities. We say that a compact 3-dimensional polyhedron W is a 3-manifold with Möbius singularities if the link of any point of W is either a 2-sphere, or a 2-disc, or a Möbius band. (The set of points of W whose links are 2-discs or Möbius bands form the boundary ∂W of W, so that the singularities of W are contained in its boundary.) Collapsing traces to points, we see that the set of 3-manifold with traced RP^2 -singularities is in a natural one-to-one correspondence with the set of 3-manifolds with Möbius singularities.

3-manifolds decorated with orientation-reversing curves. A closed simple curve γ on a surface is *orientation-reversing* if a tubular neighbourhood of γ is a Möbius band. If W is a genuine 3-manifold and C is a collection of closed simple pairwise disjoint orientation-reversing curves on the boundary ∂W , then collapsing each curve in C to a point transforms W to a 3-manifolds with Möbius singularities (each curve of C gives a singularity point). Thus, the set of 3-manifolds equipped with orientation-reversing curves is another interpretation for the set of 3-manifolds with traced RP^2 -singularities.

From virtual 3-manifolds to 3-manifolds with traced RP^2 -singularities. Each virtual 3-manifold is naturally assigned with a 3-manifold with traced RP^2 -singularities. Indeed, observe that all singular points of the truncated quotient space $Q_t := Q_t(\mathcal{D}, \Phi)$ of the scheme (\mathcal{D}, Φ) are RP^2 -singular points corresponding to barycenters of edges of the tetrahedra of \mathcal{D} . The quotient map folds the edges that give singular points so that symmetric points (with respect to the barycenters) of each such *folding* edge have the same image. We observe that the pair (Q_t, \mathcal{I}) , where \mathcal{I} is the image in Q_t of all folding edges, is a 3-manifold with traced RP^2 -singularities. The described correspondence $(\mathcal{D}, \Phi) \mapsto (Q_t, \mathcal{I})$ associates a 3-manifold with traced RP^2 -singularities to each scheme. Now, observe that any pseudo-Pachner move changes neither Q_t nor the subset in Q_t formed by the images of folding edges, so that equivalent schemes yield the same 3-manifold with traced RP^2 -singularities. This gives a map (which we denote by F) from the set of virtual 3-manifolds to the set of 3-manifolds with traced RP^2 -singularities. Note that by construction, forgetting the traces in F(V), where V is a virtual 3-manifold, converts F(V) to the underlying space of V.

Theorem 2. If (M, \mathcal{I}) is a compact connected 3-manifold with traced RP^2 -singularities and nonempty boundary, then there exists a virtual 3-manifold V such that $F(V) = (M, \mathcal{I})$.

Lemma 1. The cone $C(RP^2) = (RP^2 \times [0,1])/(RP^2 \times \{0\})$ over the projective plane RP^2 is the base space for an infinite number of pairwise distinct 3-manifolds with traced RP^2 -singularities. In other words, the singularity point in $C(RP^2)$ can be traced in an infinite number of pairwise nonequivalent ways.

Ideas of proofs. Theorem 1 follows from Theorem 2 and Lemma 1.

Theorem 2 can be proved in terms of special spine theory on the base of results established in [Mat03]. Given a compact connected 3-manifold with traced RP^2 -singularities (M, \mathcal{I}) , we delete from M open proper neighbourhoods of \mathcal{I} . The obtained genuine 3-manifold $M_{\mathcal{I}} \subset M$ possesses a *special spine* S (see [Cas65] or [Mat03, Theorem 1.1.13]). Observe that $\partial M_{\mathcal{I}} \setminus \partial M$ is the union of disjoint open Möbius bands. Let $C \subset \partial M_{\mathcal{I}}$ be the union of center curves of these Möbius bands. A natural retraction $p: M_{\mathcal{I}} \to S$ sends C to a collection of curves on S. We attach to S new *unthickenable* 2-cells along p(C) and show that the obtained special polyhedron represents a virtual 3-manifold V with $F(V) = (M, \mathcal{I})$.

In order to prove Lemma 1, consider 'knotted' traces and use the branched double covering of $C(RP^2)$ by the 3-ball (ramified over the singularity point). \Box

References

- [Cas65] B.G. Casler, An imbedding theorem for connected 3-manifolds with boundary, Proc. Amer. Math. Soc., 16, 559–566 (1965).
- [VTF16] A. Yu. Vesnin, V. G. Turaev, E. A. Fominykh, Complexity of virtual 3-manifolds, Mat. Sb., 207:11 (2016), 4–24; Sb. Math., 207:11 (2016), 1493–1511.
- [Mat03] S.V. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms and Computation in Mathematics, vol. 9, Springer-Verlag, Berlin, 2003.
- [Mat09] S. V. Matveev, Virtual 3-manifolds, Siberian electronic mathematical reports 6 (2009), 518–521.
- [Sei33] H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math., 60 (1933), 147–238.

E.A. Fominykh

Chelyabinsk State University and Krasovskii Institute of Mathematics and Mechanics Chelyabinsk, Russia e-mail: efominykh@gmail.com

A. V. Malyutin St. Petersburg Department of Steklov Institute of Mathematics St. Petersburg, Russia e-mail: malyutin@pdmi.ras.ru

A. Yu. Vesnin Sobolev Institute of Mathematics Novosibirsk, Russia e-mail: vesnin@math.nsc.ru