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Abstract. A plane diagram D of a knot is said to be semi-meandric if D is
the union of two simple smooth arcs. Every tame knot has a semi-meandric
diagram. We use this fact to define a new knot invariant: the semi-meandric
crossing number. Applying the technique of Gauss Codes and a specific algo-
rithm transforming arbitrary knot diagrams to semi-meandric ones we obtain
estimates on this invariant.

Introduction

Definition 1. A smooth closed plane curve is called semi-meandric if it is the union
of two simple smooth arcs (an arc is called simple if it is non-self-intersecting).

Theorem 1. Every tame knot has a semi-meandric diagram.

Proof. It is shown in [1] that a knot which is dyed with two different colours can
be projected on a plane without crossing strands of the same colour. Clearly, such
projection gives us a semi-meandric diagram. �

Remark 1. The approach developed in [1] is based on braid theory. We use a
different approach, which gives another proof of Theorem 1.

Theorem 1 allows us to define a new knot invariant: the semi-meandric cross-
ing number.

Definition 2. Recall that the crossing number of a knot K (denoted Cr(K)) is the
smallest number of crossings in any diagram of K. We define the semi-meandric
crossing number of K (denoted Crs(K)) as the smallest number of crossings in
any semi-meandric diagram of K.
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Theorem 2. For each tame knot K, the following inequalities hold

Cr(K) ≤ Crs(K) < (
√
3)Cr(K).

Our proof of Theorem 2 is based on properties of Gauss Codes and on the
algorithm presented below, which transforms arbitrary knot diagrams to semi-
meandric ones.

Obtaining semi-meandric diagrams
Given a diagram D of a knot K, we obtain a semi-meandric diagram of K using
the following algorithm.
1. We choose a simple arc J in D such that no endpoint of J is an intersection

point of D (the interior of J is allowed to contain intersection points of D).
2. We choose an endpoint s of J and start walking along D from s until we

find the first intersection point x of D that does not belong to J . (We may
intersect J while traveling from s to x.) Denote the path connecting s and x
by [s, x].

3. We transform D by „pulling“ x along [s, x]. This transformation decreases
the number of intersection points that are not in J , while new intersection
points of D appear on J .

4. Until our diagram is not semi-meandric, repeat steps 2 and 3.
Observe that each time, when choosing an endpoint s of J at step 2, we have

two possibilities. So, if D has n intersection points (before the first transformation)
and J contains m of them, then we have 2n−m possible final states of our diagram.
If we use greedy algorithm and minimize the number of intersection points each
time at step 2, then properties of Gauss Codes imply that double implementation
of above procedure at most triples the number of intersection points on J . In other
words, we prove that amongst four possible ways of decreasing by two the number
of intersection points that are not in J , there exists at least one way where the
number of intersection points of D in J at most triples.

Gauss Codes
Definition 3. The Gauss Code of a diagram D of a knot is obtained as follows:
• Label the intersection points of D with integers from 1 to n, where n is the

number of this points.
• Start „walking“ along D, taking note of the labels of the intersection points

we have gone through. If in a given intersection point we cross on the „over“
strand, write down the label of this point. Otherwise, we write down the
negative of the label of the intersection point.

Remark 2. In terms of Gauss Codes, we can give an alternative definition of semi-
meandric diagrams. A diagram with n intersection points is semi-meandric if and
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only if its cycled Gauss Code splits in two „connected“ parts such that the absolute
values of elements in each part is precisely all numbers from 1 to n.

Remark 3. The algorithm from the previous section can be rewritten in terms of
Gauss Codes. This allows us to make its exact implementation.
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