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Abstract. We consider a boundary value problem B1x = f where the linear
operator B1 can be decomposed in the form B1 = B2

GB
2
G0

with BG and BG0

being two linear operators of a special type. If the operator B1 is correct then
the solution can be obtained in closed form. Moreover, the eigenvalues and the
eigenvectors of the operator B1 are computed analytically. A partial integro-
differential problem is solved to demonstrate the efficiency of the method.

1. Introduction

The study of many phenomena in science, engineering and economics involve ad-
vance mathematical models which in general have a high degree of complexity and
they cannot be solved exactly. In these cases powerful numerical methods are usu-
ally employed to obtain the solution approximately. Some other problems can be
transformed to simpler ones which it is easier to deal with and even to solve them
explicitly, see for example [1] and [2] . The present article is a sequel of the work [3]
by the same authors as above and discusses the exact solution of a boundary value
problem involving an operator factored into two quadratic operators. In particu-
lar, we consider the boundary value problem B1x = f where the linear operator
B1 has a decomposition of the form B1 = B2

GB
2
G0

with BG and BG0
being two

linear operators of a special type. We prove that if the operator B1 is correct then
the solution can be obtained in closed form. Moreover, the eigenvalues and the
eigenvectors of the operator B1 can be computed analytically.

We prove a theorem concerning the computation of the determinants of a spe-
cial class of matrices and two corollaries regarding the evaluation of their eigenval-
ues and eigenvectors. Next we prove the main theorem for solving boundary value
problems involving products of operators. An example problem with an integro-
differential operator is chosen to test the efficiency of the method.
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2. Special Matrices

Theorem 1. Let the vectors a, b ∈ Rm and the matrix

C = Im + bta.

where Im stands for the m×m identity matrix and bt = col(b).Then,

|C| = det(Im + bta) = 1 + abt,

and for |C| 6= 0,

C−1 =
1

|C|
(|C|Im − bta) = Im −

1

|C|
bta.

�

From Theorem 1 some other results can be derived which are contained in
the next two corollaries and are used in the present paper.

Corollary 1. Let a, b ∈ Rm, the matrix C = Im + bta, and |C| = detC. Then the
next statements are true:
(i) The number |C| is an eigenvalue of the matrix C and bt its corresponding
eigenvector, namely

Cbt = (Im + bta)bt = |C|bt.
(ii) If |C| 6= 0, then the number 1

|C| is an eigenvalue of the matrix C−1 and bt is
its corresponding eigenvector, explicitly

C−1bt =
1

|C|
(
|C|Im − bta

)
bt =

1

|C|
bt.

(iii) The number |C| is an eigenvalue of the matrix Ct and at is its corresponding
eigenvector, that is to say

aC = a|C| or Ctat = |C|at.

(iv) If |C| 6= 0, then the number 1
|C| is an eigenvalue of the matrix (Ct)−1 and at

is its corresponding eigenvector, specifically

aC−1 =
1

|C|
a or (Ct)−1at =

1

|C|
at.

(v)If |C| 6= 0 then,

1− aC−1bt =
1

|C|
.

�

Corollary 2. Let the vectors a, b, c ∈ Rm, k ∈ C and the matrix

C1 =

(
Im + kbta kbtc

bta Im + btc

)
= I2m +

(
kbt

bt

)(
a c

)
.
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Then, detC1 = 1 + (ka+ c)bt and for detC1 = |C1| 6= 0,(
a c

)
C−11 =

1

|C1|
(
a c

)
and 1−

(
a c

)
C−11

(
kbt

bt

)
=

1

|C1|
,

C−1 =
1

|C1|

(
|C1|Im − kbta −kbtc
−bta |C1|Im − btc

)
= I2m −

1

|C1|

(
kbt

bt

)(
a c

)
.

�

3. Factorization Operator Method

We cite now the main theorem of the current work.

Theorem 2. Let the operator B1 : H → H be defined by

B1x = Â2Â2
0x− V 〈Â0x,Φ

t〉Hm − Y 〈Â2
0x,Φ

t〉Hm − S〈ÂÂ2
0x, F

t〉Hm

−G〈Â2Â2
0x, F

t〉Hm = f, D(B1) = D(Â2Â2
0), (1)

where Â0, Â : H → H are linear correct operators and the vectors F,Φ ∈ Hm. We
also suppose that x0 is an eigenvector of both operators Â0 and Â, the numbers
α0, α are the corresponding to x0 nonzero eigenvalues of the operators Â0 and Â,
respectively. Finally, let Y = (y1x0, ..., ymx0) = yx0, G = (g1x0, ..., gmx0) = gx0
and S, V ∈ Hm, where yi, gi ∈ C, i = 1, ...,m. Then the following statements hold:
(i) If

S = αDgx0, V = α0D0yx0, (2)

where D0 = 1 − 1

α2D2
y〈x0,Φt〉H , and D = 1 − g〈x0, F t〉H 6= 0, then, B1 has the

unique decomposition

B1 = B2
GB

2
G0
, (3)

where

BG0x = Â0x−G0〈Â0x,Φ
t〉Hm = f, D(BG0) = D(Â0), (4)

BGx = Âx−G〈Âx, F t〉Hm = f, D(BG) = D(Â), (5)

with G0 =
1

α2D2
yx0.

(ii) If G0, S, V satisfy (2) then x0 is also the eigenvector of the operators BG, BG0

and B1 = B2
GB

2
G0

, while the numbers αD,α0D0 and α2α2
0D

2D2
0 are the corre-

sponding eigenvalues of BG, BG0 and B1 = B2
GB

2
G0
, respectively.

(iii) If (2) is true and in addition Â0, Â are densely defined then B1 is correct if
and only if the number D0 6= 0.
(iv) If (2) is valid and B1 = B2

GB
2
G0

is correct then the unique solution of the
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problem (1) is given by

x = B−11 f = Â−20 Â−2f

+
x0

α2
0α

2D2
0D

2

[
αDg〈Â−1f, F t〉Hm + g〈f, F t〉Hm

+y〈Â−2f,Φt〉Hm + α0D0y〈Â−10 Â−2f,Φt〉Hm

]
. � (6)

4. Applications

In what follows Hi(Ω) denotes the Sobolev space of all complex functions of H =
L2(Ω) which have generalized derivatives up to the i order that are Lebesque
integrable, i = 1, 2, 3, 4, Ω = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1}.

Example 3. Consider the operator B1 : L2(Ω)→ L2(Ω) defined by

B1u = uxxyy + V

∫ 1

0

∫ 1

0

(2x− 1)uxdydx

+iπe−iπ(x+y)
∫ 1

0

∫ 1

0

(2x− 1)uxxdxdy + S

∫ 1

0

∫ 1

0

(y2 − y)uxxydxdy

−2π2e−iπ(x+y)
∫ 1

0

∫ 1

0

(2y − 1)uxxydxdy = f,

D(B1) = {u ∈ H4(Ω) : u(0, y) + u(1, y) = 0, ux(0, y) + ux(1, y) = 0,

uxx(x, 0) + uxx(x, 1) = 0, uxxy(x, 0) + uxxy(x, 1) = 0}, (7)

where V, S are unknown functions of L2(Ω). By Theorem 2 we have:
(i) If

S = 2πi(π2 − 16)e−iπ(x+y), V =
iπ2(π2 − 32π + 264)

(π2 − 16)2
e−iπ(x+y), (8)

thenB1 is correct and has the unique decompositionB1 = B2
GB

2
G0

, where BG0
, BG

are defined by (4)-(5), respectively and G0 = iπ3

π2+16e
−iπ(x+y),

(ii) If S, V satisfy (8) then the number β = (π4+32π2+264)2

(π2+16)2 is an eigenvalue of
B1 and x0 = e−iπ(x+y) its corresponding eigenvector,
(iii) If S, V satisfy (8) then the unique solution of (7) is given by

x = B−11 f = Â−20 Â−2f +
x0
β

[ iπ(π2 + 16)

6

∫ 1

0

∫ 1

0

(4y3 − 6y2 + 1)f(x, y)dxdy

−2π

∫ 1

0

∫ 1

0

(y2 − y)f(x, y)dxdy +
iπ

2

∫ 1

0

∫ 1

0

(2x− 1)(y − y2)f(x, y)dxdy

−π
2(π4 + 32π2 + 264)

2(π2 + 16)2

∫ 1

0

∫ 1

0

(x2 − x)(y − y2)f(x, y)dxdy
]
.
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where

Â−20 Â−2f =

∫ x

0

(x− x1)dx1

∫ y

0

(y − y1)f(x1, y1)dy1

−1

4

∫ x

0

(x− x1)dx1

∫ 1

0

(2y − 2y1 + 1)f(x1, y1)dy1

−1

4

∫ 1

0

(2x− 2x1 + 1)dx1

∫ y

0

(y − y1)f(x1, y1)dy1

+
1

16

∫ 1

0

(2x− 2x1 + 1)dx1

∫ 1

0

(2y − 2y1 + 1)f(x1, y1)dy1.
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